PageRank-Related Methods for Analyzing Citation Networks

Chapter

Abstract

A central question in citation analysis is how the most important or most prominent nodes in a citation network can be identified. Many different approaches have been proposed to address this question. In this chapter, we focus on approaches that assess the importance of a node in a citation network based not just on the local structure of the network but instead on the network’s global structure. For instance, rather than just counting the number of citations a journal has received, these approaches also take into account from which journals the citations originate and how often these citing journals have been cited themselves. The methods that we study are closely related to the well-known PageRank method for ranking web pages. We therefore start by discussing the PageRank method, and we then review the work that has been done in the field of citation analysis on similar types of methods. In the second part of the chapter, we provide a tutorial in which we demonstrate how PageRank calculations can be performed for citation networks constructed based on data from the Web of Science database. The Sci2 tool is used to construct citation networks, and MATLAB is used to perform PageRank calculations.

References

  1. Bergstrom, C. T. (2007). Eigenfactor: Measuring the value and prestige of scholarly journals. College and Research Libraries News, 68(5), 314–316.Google Scholar
  2. Bollen, J., Rodriguez, M. A., & Van de Sompel, H. (2006). Journal status. Scientometrics, 69(3), 669–687.CrossRefGoogle Scholar
  3. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.CrossRefGoogle Scholar
  4. Chen, P., Xie, H., Maslov, S., & Redner, S. (2007). Finding scientific gems with Google’s PageRank algorithm. Journal of Informetrics, 1(1), 8–15.CrossRefGoogle Scholar
  5. Davis, P. M. (2008). Eigenfactor: Does the principle of repeated improvement result in better estimates than raw citation counts? Journal of the American Society for Information Science and Technology, 59(13), 2186–2188.CrossRefGoogle Scholar
  6. Ding, Y. (2011). Applying weighted PageRank to author citation networks. Journal of the American Society for Information Science and Technology, 62(2), 236–245.CrossRefGoogle Scholar
  7. Doreian, P. (1985). A measure of standing of journals in stratified networks. Scientometrics, 8(5–6), 341–363.CrossRefGoogle Scholar
  8. Doreian, P. (1987). A revised measure of standing of journals in stratified networks. Scientometrics, 11(1–2), 71–80.CrossRefGoogle Scholar
  9. Fiala, D. (2012). Time-aware PageRank for bibliographic networks. Journal of Informetrics, 6(3), 370–388.CrossRefGoogle Scholar
  10. Fiala, D., Rousselot, F., & Ježek, K. (2008). PageRank for bibliographic networks. Scientometrics, 76(1), 135–158.CrossRefGoogle Scholar
  11. Franceschet, M. (2010a). The difference between popularity and prestige in the sciences and in the social sciences: A bibliometric analysis. Journal of Informetrics, 4(1), 55–63.CrossRefGoogle Scholar
  12. Franceschet, M. (2010b). Journal influence factors. Journal of Informetrics, 4(3), 239–248.CrossRefMathSciNetGoogle Scholar
  13. Franceschet, M. (2010c). Ten good reasons to use the Eigenfactor metrics. Information Processing and Management, 46(5), 555–558.CrossRefGoogle Scholar
  14. Franceschet, M. (2011). PageRank: Standing on the shoulders of giants. Communications of the ACM, 54(6), 92–101.CrossRefGoogle Scholar
  15. Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science, 178, 471–479.CrossRefGoogle Scholar
  16. Geller, N. L. (1978). On the citation influence methodology of Pinski and Narin. Information Processing and Management, 14(2), 93–95.CrossRefMATHMathSciNetGoogle Scholar
  17. González-Pereira, B., Guerrero-Bote, V. P., & Moya-Anegón, F. (2010). A new approach to the metric of journals’ scientific prestige: The SJR indicator. Journal of Informetrics, 4(3), 379–391.CrossRefGoogle Scholar
  18. Gualdi, S., Medo, M., & Zhang, Y. C. (2011). Influence, originality and similarity in directed acyclic graphs. EPL, 96(1), 18004.CrossRefGoogle Scholar
  19. Guerrero-Bote, V. P., & Moya-Anegón, F. (2012). A further step forward in measuring journals’ scientific prestige: The SJR2 indicator. Journal of Informetrics, 6(4), 674–688.CrossRefGoogle Scholar
  20. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572.CrossRefGoogle Scholar
  21. Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39–43.CrossRefMATHGoogle Scholar
  22. Langville, A. N., & Meyer, C. D. (2006). Google’s PageRank and beyond: The science of search engine rankings. Princeton, NJ: Princeton University Press.Google Scholar
  23. Leontief, W. W. (1941). The structure of American economy, 1919–1929. Cambridge, MA: Harvard University Press.Google Scholar
  24. Li, J., & Willett, P. (2009). ArticleRank: A PageRank-based alternative to numbers of citations for analysing citation networks. Aslib Proceedings, 61(6), 605–618.CrossRefGoogle Scholar
  25. Liebowitz, S. J., & Palmer, J. P. (1984). Assessing the relative impacts of economics journals. Journal of Economic Literature, 22(1), 77–88.Google Scholar
  26. Ma, N., Guan, J., & Zhao, Y. (2008). Bringing PageRank to the citation analysis. Information Processing and Management, 44(2), 800–810.CrossRefGoogle Scholar
  27. Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the Web (Technical Report). Stanford InfoLab.Google Scholar
  28. Palacios-Huerta, I., & Volij, O. (2004). The measurement of intellectual influence. Econometrica, 72(3), 963–977.CrossRefMATHGoogle Scholar
  29. Pinski, G., & Narin, F. (1976). Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics. Information Processing and Management, 12(5), 297–312.CrossRefGoogle Scholar
  30. Radicchi, F., Fortunato, S., Markines, B., & Vespignani, A. (2009). Diffusion of scientific credits and the ranking of scientists. Physical Review E, 80(5), 056103.CrossRefGoogle Scholar
  31. Salancik, G. R. (1986). An index of subgroup influence in dependency networks. Administrative Science Quarterly, 31(2), 194–211.CrossRefGoogle Scholar
  32. Su, C., Pan, Y. T., Zhen, Y. N., Ma, Z., Yuan, J. P., Guo, H., …, & Wu, Y. S. (2011). PrestigeRank: A new evaluation method for papers and journals. Journal of Informetrics, 5(1), 1–13.Google Scholar
  33. Todorov, R. (1984). Determination of influence weights for scientific journals. Scientometrics, 6(2), 127–137.CrossRefGoogle Scholar
  34. Walker, D., Xie, H., Yan, K. H., & Maslov, S. (2007). Ranking scientific publications using a model of network traffic. Journal of Statistical Mechanics: Theory and Experiment, 2007, P06010.CrossRefGoogle Scholar
  35. Waltman, L., & Van Eck, N. J. (2010). The relation between Eigenfactor, audience factor, and influence weight. Journal of the American Society for Information Science and Technology, 61(7), 1476–1486.CrossRefGoogle Scholar
  36. West, J. D., Bergstrom, T. C., & Bergstrom, C. T. (2010a). The Eigenfactor metrics: A network approach to assessing scholarly journals. College and Research Libraries, 71(3), 236–244.CrossRefGoogle Scholar
  37. West, J. D., Bergstrom, T. C., & Bergstrom, C. T. (2010b). Big Macs and Eigenfactor scores: Don’t let correlation coefficients fool you. Journal of the American Society for Information Science and Technology, 61(9), 1800–1807.CrossRefGoogle Scholar
  38. West, J. D., Jensen, M. C., Dandrea, R. J., Gordon, G. J., & Bergstrom, C. T. (2013). Author-level Eigenfactor metrics: Evaluating the influence of authors, institutions, and countries within the social science research network community. Journal of the American Society for Information Science and Technology, 64(4), 787–801.CrossRefGoogle Scholar
  39. Wu, H., He, J., & Pei, Y. J. (2010). Scientific impact at the topic level: A case study in computational linguistics. Journal of the American Society for Information Science and Technology, 61(11), 2274–2287.CrossRefGoogle Scholar
  40. Yan, E., & Ding, Y. (2011a). The effects of dangling nodes on citation networks. In Proceedings of the 13th International Conference on Scientometrics and Informetrics, July 4–8, 2011, Durban, South Africa.Google Scholar
  41. Yan, E., & Ding, Y. (2011). Discovering author impact: A PageRank perspective. Information Processing and Management, 47(1), 125–134.CrossRefGoogle Scholar
  42. Yan, E., Ding, Y., & Sugimoto, C. R. (2011). P-Rank: An indicator measuring prestige in heterogeneous scholarly networks. Journal of the American Society for Information Science and Technology, 62(3), 467–477.Google Scholar
  43. Zhou, Y. B., Lü, L., & Li, M. (2012). Quantifying the influence of scientists and their publications: Distinguishing between prestige and popularity. New Journal of Physics, 14, 033033.CrossRefGoogle Scholar
  44. Życzkowski, K. (2010). Citation graph, weighted impact factors and performance indices. Scientometrics, 85(1), 301–315.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Centre for Science and Technology StudiesLeiden UniversityLeidenThe Netherlands
  2. 2.College of Computing and InformaticsDrexel UniversityPhiladelphiaUSA

Personalised recommendations