Visualizing Bibliometric Networks

Chapter

Abstract

This chapter provides an introduction to the topic of visualizing bibliometric networks. First, the most commonly studied types of bibliometric networks (i.e., citation, co-citation, bibliographic coupling, keyword co-occurrence, and coauthorship networks) are discussed, and three popular visualization approaches (i.e., distance-based, graph-based, and timeline-based approaches) are distinguished. Next, an overview is given of a number of software tools that can be used for visualizing bibliometric networks. In the second part of the chapter, the focus is specifically on two software tools: VOSviewer and CitNetExplorer. The techniques used by these tools to construct, analyze, and visualize bibliometric networks are discussed. In addition, tutorials are offered that demonstrate in a step-by-step manner how both tools can be used. Finally, the chapter concludes with a discussion of the limitations and the proper use of bibliometric network visualizations and with a summary of some ongoing and future developments.

Notes

Acknowledgment

We would like to thank Katy Börner and Ismael Rafols for their very helpful comments on an earlier draft of this chapter.

References

  1. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media [Online]Google Scholar
  2. Bollen, J., Van de Sompel, H., Hagberg, A., Bettencourt, L., Chute, R., Rodriguez, M. A., et al. (2009). Clickstream data yields high-resolution maps of science. PLoS ONE, 4(3), e4803.CrossRefGoogle Scholar
  3. Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling (2nd ed.). New York, NY: Springer.MATHGoogle Scholar
  4. Börner, K. (2010). Atlas of science: Visualizing what we know. Cambridge, MA: MIT Press.Google Scholar
  5. Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255.CrossRefGoogle Scholar
  6. Börner, K., Klavans, R., Patek, M., Zoss, A. M., Biberstine, J. R., Light, R. P., et al. (2012). Design and update of a classification system: The UCSD map of science. PLoS ONE, 7(7), e39464.CrossRefGoogle Scholar
  7. Boyack, K. W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation. Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology, 61(12), 2389–2404.CrossRefGoogle Scholar
  8. Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.CrossRefGoogle Scholar
  9. Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191–235.CrossRefGoogle Scholar
  10. Callon, M., Law, J., & Rip, A. (Eds.). (1986). Mapping the dynamics of science and technology. London: MacMillan.Google Scholar
  11. Chen, C. (1999). Visualising semantic spaces and author co-citation networks in digital libraries. Information Processing & Management, 35(3), 401–420.CrossRefGoogle Scholar
  12. Chen, C. (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences, 101(suppl. 1), 5303–5310.CrossRefGoogle Scholar
  13. Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.CrossRefGoogle Scholar
  14. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402.CrossRefGoogle Scholar
  15. De Moya-Anegón, F., Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., Munoz-Fernández, F. J., & Herrero-Solana, V. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58(14), 2167–2179.CrossRefGoogle Scholar
  16. De Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with Pajek. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 1129–1164.Google Scholar
  18. Garfield, E. (2004). Historiographic mapping of knowledge domains literature. Journal of Information Science, 30(2), 119–145.CrossRefGoogle Scholar
  19. Garfield, E., Pudovkin, A. I., & Istomin, V. S. (2003). Why do we need algorithmic historiography? Journal of the American Society for Information Science and Technology, 54(5), 400–412.CrossRefGoogle Scholar
  20. Griffith, B. C., Small, H., Stonehill, J. A., & Dey, S. (1974). The structure of scientific literatures II: Toward a macro- and microstructure for science. Science Studies, 4(4), 339–365.CrossRefGoogle Scholar
  21. Healy, P., & Nikolov, N. S. (2013). Hierarchical drawing algorithms. In R. Tamassia (Ed.), Handbook of graph drawing and visualization (pp. 409–453). Boca Raton, FL: CRC Press.Google Scholar
  22. Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Networks, 11(1), 39–63.CrossRefGoogle Scholar
  23. Jarneving, J. (2007). Bibliographic coupling and its application to research-front and other core documents. Journal of Informetrics, 1(4), 287–307.CrossRefGoogle Scholar
  24. Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1), 7–15.CrossRefMATHMathSciNetGoogle Scholar
  25. Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10–25.CrossRefGoogle Scholar
  26. Klavans, R., & Boyack, K. W. (2006). Quantitative evaluation of large maps of science. Scientometrics, 68(3), 475–499.CrossRefGoogle Scholar
  27. Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348–362.CrossRefGoogle Scholar
  28. Leydesdorff, L., & Rafols, I. (2012). Interactive overlays: A new method for generating global journal maps from Web-of-Science data. Journal of Informetrics, 6(2), 318–332.CrossRefGoogle Scholar
  29. Luukkonen, T., Tijssen, R. J. W., Persson, O., & Sivertsen, G. (1993). The measurement of international scientific collaboration. Scientometrics, 28(1), 15–36.CrossRefGoogle Scholar
  30. Marshakova, I. (1973). System of documentation connections based on references (SCI). Nauchno-TekhnicheskayaInformatsiya Seriya, 2(6), 3–8.Google Scholar
  31. McCain, K. W. (1991). Mapping economics through the journal literature: An experiment in journal cocitation analysis. Journal of the American Society for Information Science, 42(4), 290–296.CrossRefGoogle Scholar
  32. Morris, S. A., Yen, G., Wu, Z., & Asnake, B. (2003). Time line visualization of research fronts. Journal of the American Society for Information Science and Technology, 54(5), 413–422.CrossRefGoogle Scholar
  33. Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69(6), 066133.CrossRefGoogle Scholar
  34. Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.CrossRefGoogle Scholar
  35. Persson, O. (2010). Identifying research themes with weighted direct citation links. Journal of Informetrics, 4(3), 415–422.CrossRefGoogle Scholar
  36. Peters, H. P. F., & Van Raan, A. F. J. (1993). Co-word-based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling. Research Policy, 22(1), 23–45.CrossRefGoogle Scholar
  37. Schvaneveldt, R. W., Dearholt, D. W., & Durso, F. T. (1988). Graph theoretic foundations of pathfinder networks. Computers & Mathematics with Applications, 15(4), 337–345.CrossRefMATHMathSciNetGoogle Scholar
  38. Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.CrossRefMathSciNetGoogle Scholar
  39. Skupin, A., Biberstine, J. R., & Börner, K. (2013). Visualizing the topical structure of the medical sciences: A self-organizing map approach. PLoS ONE, 8(3), e58779.CrossRefGoogle Scholar
  40. Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265–269.CrossRefGoogle Scholar
  41. Small, H. (1997). Update on science mapping: Creating large document spaces. Scientometrics, 38(2), 275–293.CrossRefMathSciNetGoogle Scholar
  42. Small, H., & Griffith, B. C. (1974). The structure of scientific literatures I: Identifying and graphing specialties. Science Studies, 4(1), 17–40.CrossRefGoogle Scholar
  43. Van Eck, N. J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651.CrossRefGoogle Scholar
  44. Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.CrossRefGoogle Scholar
  45. Van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. ISSI Newsletter, 7(3), 50–54.Google Scholar
  46. Van Eck, N. J., Waltman, L., Dekker, R., & Van den Berg, J. (2010). A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12), 2405–2416.CrossRefGoogle Scholar
  47. Van Eck, N. J., Waltman, L., Van Raan, A. F. J., Klautz, R. J. M., & Peul, W. C. (2013). Citation analysis may severely underestimate the impact of clinical research as compared to basic research. PLoS ONE, 8(4), e62395.CrossRefGoogle Scholar
  48. Waltman, L., & Van Eck, N. J. (2012). A new methodology for constructing a publication-level classification system of science. Journal of the American Society for Information Science and Technology, 63(12), 2378–2392.CrossRefGoogle Scholar
  49. Waltman, L., & Van Eck, N. J. (2013). A smart local moving algorithm for large-scale modularity-based community detection. European Physical Journal B, 86, 471.CrossRefGoogle Scholar
  50. Waltman, L., Van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635.CrossRefGoogle Scholar
  51. White, H. D. (2003). Pathfinder networks and author cocitation analysis: A remapping of paradigmatic information scientists. Journal of the American Society for Information Science and Technology, 54(5), 423–434.CrossRefGoogle Scholar
  52. White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163–171.CrossRefGoogle Scholar
  53. White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4), 327–355.Google Scholar
  54. Zhao, D., & Strotmann, A. (2008). Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic-coupling analysis. Journal of the American Society for Information Science and Technology, 59(13), 2070–2086.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Centre for Science and Technology StudiesLeiden UniversityLeidenThe Netherlands

Personalised recommendations