Advertisement

Online Change Detection for Energy-Efficient Mobile Crowdsensing

  • Viet-Duc Le
  • Hans Scholten
  • P. J. M Havinga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8640)

Abstract

Mobile crowdsensing is power hungry since it requires continuously and simultaneously sensing, processing and uploading fused data from various sensor types including motion sensors and environment sensors. Realizing that being able to pinpoint change points of contexts enables energy-efficient mobile crowdsensing, we modify histogram-based techniques to efficiently detect changes, which has less computational complexity and performs better than the conventional techniques. To evaluate our proposed technique, we conducted experiments on real audio databases comprising 200 sound tracks. We also compare our change detection with multivariate normal distribution and one-class support vector machine. The results show that our proposed technique is more practical for mobile crowdsensing. For example, we show that it is possible to save 80% resource compared to standard continuous sensing while remaining detection sensitivity above 95%. This work enables energy-efficient mobile crowdsensing applications by adapting to contexts.

Keywords

Mobile Crowdsensing Change Detection Energy Efficiency Resource Constraints Computational Complexity Adaptive Sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Beach, A., Gartrell, M., Akkala, S., Elston, J., Kelley, J., Nishimoto, K., Ray, B., Razgulin, S., Sundaresan, K., Surendar, B., Terada, M., Han, R.: Whozthat? evolving an ecosystem for context-aware mobile social networks. Netwrk. Mag. of Global Internetwkg 22(4), 50–55 (2008)Google Scholar
  3. 3.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection for discrete sequences: A survey. IEEE Transactions on Knowledge and Data Engineering 24(5), 823–839 (2012)CrossRefGoogle Scholar
  4. 4.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009)Google Scholar
  5. 5.
    Eskin, E.: Modeling system calls for intrusion detection with dynamic window sizes. In: Proc. DISCEX (2001)Google Scholar
  6. 6.
    Fawcett, T., Provost, F.: Activity monitoring: Noticing interesting changes in behavior. In: Proc. SIGKDD, pp. 53–62 (1999)Google Scholar
  7. 7.
    Ganti, R., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Communications Magazine 49(11), 32–39 (2011)CrossRefGoogle Scholar
  8. 8.
    Goldstein, M., Dengel, A.: Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm. In: Stefan Advances in Konwledge Discovery and Data Mining. LNCS, pp. 577–593. Springer (206)Google Scholar
  9. 9.
    Le, V.D., Scholten, H., Havinga, P.: Flead: Online frequency likelihood estimation anomaly detection for mobile sensing. In: Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, UbiComp 2013 Adjunct, pp. 1159–1166. ACM, New York (2013)CrossRefGoogle Scholar
  10. 10.
    Lu, H., Yang, J., Liu, Z., Lane, N.D., Choudhury, T., Campbell, A.T.: The jigsaw continuous sensing engine for mobile phone applications. In: Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys 2010, pp. 71–84. ACM, New York (2010)Google Scholar
  11. 11.
    Manevitz, L.M., Yousef, M.: One-class svms for document classification. J. Mach. Learn. Res. 2, 139–154 (2002)zbMATHGoogle Scholar
  12. 12.
    Ng, A.: Machine learning, https://class.coursera.org/ml/lecture/97
  13. 13.
    Olson, D.L., Delen, D.: Advanced DataMining Techniques. Springer (2008)Google Scholar
  14. 14.
    Rachuri, K.K., Musolesi, M., Mascolo, C., Rentfrow, P.J., Longworth, C., Aucinas, A.: Emotionsense: A mobile phones based adaptive platform for experimental social psychology research. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, Ubicomp 2010, pp. 281–290. ACM, New York (2010)Google Scholar
  15. 15.
    Sherchan, W., Jayaraman, P.P., Krishnaswamy, S., Zaslavsky, A., Loke, S., Sinha, A.: Using on-the-move mining for mobile crowdsensing. In: Proceedings of the 2012 IEEE 13th International Conference on Mobile Data Management (Mdm 2012), MDM 2012, pp. 115–124. IEEE Computer Society, Washington, DC (2012)Google Scholar
  16. 16.
    Wang, Y., Lin, J., Annavaram, M., Jacobson, Q.A., Hong, J., Krishnamachari, B., Sadeh, N.: A framework of energy efficient mobile sensing for automatic user state recognition. In: Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, MobiSys 2009, pp. 179–192. ACM, New York (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Viet-Duc Le
    • 1
  • Hans Scholten
    • 1
  • P. J. M Havinga
    • 1
  1. 1.Pervasive SystemsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations