An Overview of Cell Culture Engineering for the Insect Cell-Baculovirus Expression Vector System (BEVS)

  • Laura A. Palomares
  • Mauricio Realpe
  • Octavio T. Ramírez
Part of the Cell Engineering book series (CEEN, volume 9)


The insect cell-baculovirus protein expression vector system (BEVS) has gained increasing attention as more of its products are approved for human use. However, the system has been relevant for many years, being used for the manufacturing of recombinant veterinary vaccines, as a workhorse in the research laboratory, as an important tool for new drug discovery and as an important source of commercial materials and reagents for research. In this chapter, the key elements that should be considered for the design of a productive BEVS process are discussed, along with a presentation of the state of the art of the system.


Insect cells, baculovirus expression vector system Recombinant protein production, transient gene expression 



We are thankful to Enrique Paz for his artwork. Technical support by Rosa Román and Roberto Rodríguez. Financial support by PAPIIT UNAM IT-200113 and IT-210214.


  1. Bédard C, Tom R, Kamen A (1993) Growth, nutrient consumption and end-product accumulation in Sf-9 and BTI-EAA insect cell cultures: insights into growth limitation and metabolism. Biotechnol Prog 9:615–624PubMedCrossRefGoogle Scholar
  2. Benavides J, Mena JA, Cisneros M, Ramírez OT, Palomares LA, Rito-Palomares M (2006) Rotavirus-like particles primary recovery from insect cells in aqueous two-phase systems. J Chromatogr B Analyt Technol Biomed Life Sci 842:48–57PubMedCrossRefGoogle Scholar
  3. Benslimane C, Elias CB, Hawari J, Kamen A (2005) Insights into the central metabolism of Spodoptera frugiperda (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5) insect cells by radiolabeling studies. Biotechnol Prog 21:78–86PubMedCrossRefGoogle Scholar
  4. Bernal V, Carinhas N, Yokomizo AY, Carrondo MJT, Alves PM (2009) Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol Bioeng 104:162–180PubMedCrossRefGoogle Scholar
  5. Buckland B, Boulanger R, Fino M, Srivastava I, Khramstov N, McPherson C, Meghrous J, Kubera P, Cox MMJ (In press) Technology transfer and scale-up of the Flublok recombinant hemagglutinin influenza vaccine manufacturing process. VaccineGoogle Scholar
  6. Carreño-Fuentes L, Ascencio JA, Medina A, Aguila S, Palomares LA, Ramírez OT (2013) Strategies for specifically directing metal functionalization of protein nanotubes: constructing protein coated silver nanowires. Nanotechnology 24:235602PubMedCrossRefGoogle Scholar
  7. Castro-Acosta RM, Rodríguez-Limas WA, Valderrama B, Ramírez OT, Palomares LA (2014) Effect of metal catalyzed oxidation in recombinant viral protein assemblies. Microb Cell Fact 13:25PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen YR, Zhong S, Fei Z, Hashimoto Y, Xiang JZ et al (2013) The transcriptome of the baculovirus Autographa californica multiple nucleopolyhedrovirus in Trichoplusia ni cells. J Virol 87:6391–6405PubMedCentralPubMedCrossRefGoogle Scholar
  9. Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E, Chisti Y (2014) Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 30:1–18PubMedCrossRefGoogle Scholar
  10. Cox MMJ (2012) Recombinant protein vaccines produced in insect cells. Vaccine 30:1759–1766PubMedCrossRefGoogle Scholar
  11. Davis TR, Wickham K, McKenna K, Granados RR, Shuler ML, Wood HA (1993) Comparative recombinant protein production of eight insect cell lines. In Vitro Cell Dev Biol 29A:388–390CrossRefGoogle Scholar
  12. de Vries RP, Smit CH, de Burin E, Rigter A, de Vries E, Cornelissen LAHM, Eggink D, Chung NPY, Moore JP, Sanders RW, Hokke CH, Koopmans M, Rottier PJM, de Haan CAM (2012) Glycan dependent immunogenicity of recombinant soluble trimeric hemagglutinin. J Virol 86:11735–11744PubMedCentralPubMedCrossRefGoogle Scholar
  13. Donaldson MS, Shuler ML (1998) Low cost serum-free medium for the BTI Tn5B1-4 insect cell line. Biotechnol Prog 14:573–579PubMedCrossRefGoogle Scholar
  14. Drews M, Doverskog M, Ohman L, Chapman BE, Jacobson U, Kuchel PW, Haggstrom L (2000) Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells: evidence for the presence of the nitrogen assimilation system and a metabolic switch by 1H/15N NMR. J Biotechnol 78:23–37PubMedCrossRefGoogle Scholar
  15. Drugmand JC, Schneider YJ, Agathos SN (2012) Insect cells as factories for biomanufacturing. Biotechnol Adv 30:1140–1157PubMedCrossRefGoogle Scholar
  16. Elias CB, Zeizer A, Bédard C, Kamen AA (2000) Enhanced growth of Sf-9 cells to a maximum cell density of 5.2 × 107 cells per mL and production of β-galactosidase ay high cell density by fed batch culture. Biotechnol Bioeng 68:381–388PubMedCrossRefGoogle Scholar
  17. Garcia-Briones MA, Brodkey RS, Chalmers JJ (1994) Computer simulation of the rupture of a gas bubble at a gas-liquid interface and its implications in animal cell damage. Chem Eng Sci 49:2301–2320CrossRefGoogle Scholar
  18. Garnier A, Voyer R, Tom R, Perret S, Jardin B, Kamen A (1996) Dissolved carbon dioxide accumulation in a large scale and high density production of TGFβ receptor with baculovirus infected Sf-9 cells. Cytotechnology 22:53–63PubMedCrossRefGoogle Scholar
  19. Goldschmidt R (1915) Some experiments on spermatogenesis in vitro. Proc Natl Acad Sci U S A 1(4):220–222PubMedCentralPubMedCrossRefGoogle Scholar
  20. Grace TDC (1962) Establishment of four strains of cells from insect tissue grown in vitro. Nature 195:788–789PubMedCrossRefGoogle Scholar
  21. Granados RR (1991) Trichoplusia ni cell line which supports replication of baculoviruses. US Patent 5,300,435AGoogle Scholar
  22. Granados RR, Li G (2002) Clonal cell lines derived from BTI-TN-5B1-4. US Patent 7,179,648 B2Google Scholar
  23. Hink WF (1970) Established cell line from the cabbage looper. Trichoplusia ni. Nature 226:466–467PubMedCrossRefGoogle Scholar
  24. Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M (1995) Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 92:10099–10103PubMedCentralPubMedCrossRefGoogle Scholar
  25. Jakubowsla A, Ferré J, Herrero S (2009) Enhancing the multiplication of nucleopolyhedrovirus in vitro by manipulation of the pH. J Virol Methods 161:254–258CrossRefGoogle Scholar
  26. Jorio H, Tran R, Kamen A (2006) Stability of serum-free and purified baculovirus stocks under various storage conditions. Biotechnol Prog 22:319–325PubMedCrossRefGoogle Scholar
  27. Kamen AA, Bédard C, Tom R, Perret S, Jardin B (1996) On-line monitoring of respiration in recombinant-baculovirus infected and uninfected insect cell bioreactor cultures. Biotechnol Bioeng 50:36–48PubMedCrossRefGoogle Scholar
  28. Kioukia N, Nienow A, Emery A, Al-Rubeai M (1995) Physiological and environmental factors affecting the growth of insect cells and infection with baculovirus. J Biotechnol 38:243–251PubMedCrossRefGoogle Scholar
  29. Kohlbrenner E, Aslanidi G, Nash K, Shklyaev S, Campbell-Thompson M, Byrne BB, Snyder RO, Muzyczka N, Warrington KH, Zolotukhin S (2005) Successful production of pseudotyped rAAV vectors using a modified baculovirus expression system. Mol Ther 12:1217–1225PubMedCentralPubMedGoogle Scholar
  30. Kool M, Voncken JW, van Lier FLJ, Tramper J, Vlak JM (1991) Detection and analysis of Autographa californica nuclear polyhedrosis virus mutants with defective interfering properties. Virology 183:739–746PubMedCrossRefGoogle Scholar
  31. Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567–575PubMedCentralPubMedCrossRefGoogle Scholar
  32. Krammer F, Schinko T, Palmberger D, Tauer C, Messner P, Grabherr R (2010) Trichoplusia ni (High Five™) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Mol Biotechnol 45:226–234PubMedCrossRefGoogle Scholar
  33. Lara AR, Galindo E, Ramírez OT, Palomares LA (2006) Living with heterogeneities in bioreactor. Understanding the effects of environmental gradients on cells. Mol Biotechnol 34:355–381PubMedCrossRefGoogle Scholar
  34. Lin SC, Jan JT, Dionne B, Butler M, Huang MS, Wu CY, Wong CH, Wu SC (2013) Different immunity elicited by recombinant H5N1 hemagglutinin proteins containing pauci-mannose, high-mannose, or complex type N-glycans. PLoS One 8(6):e66719PubMedCentralPubMedCrossRefGoogle Scholar
  35. Liu F, Wu X, Li L, Liu Z, Wang Z (2013) Use of baculovirus expression system for generation of virus-like particles: successes and challenges. Prot Exp Pur 90:104–446CrossRefGoogle Scholar
  36. Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibiwo N, Middelberg APJ (2014) Bioengineering virus-like particles as vaccines. Biotechnol Bioeng 111:425–440PubMedCrossRefGoogle Scholar
  37. Luckow VA, Lee SC, Barry GF, Olins PO (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67:4566–4579PubMedCentralPubMedGoogle Scholar
  38. Luo WY, Shih YS, Lo WH, Chen HR, Wang SC, Wang CH, Chien CH, Chiang CS, Chuang YJ, Hu YC (2011) Baculovirus vectors for antiangiogenesis-based cancer gene therapy. Cancer Gene Ther 18:637–645PubMedCrossRefGoogle Scholar
  39. Marek M, van Oers MM, Devaraj FF, Vlak JM, Merten OW (2011) Engineering of baculovirus vectors for the manufacture of virion-free biopharmaceuticals. Biotechnol Bioeng 108:1056–1067PubMedCrossRefGoogle Scholar
  40. Meghrous J, Khramstov N, Buckland BC, Palomares LA, Srivastava I (Submitted) Carbon dioxide determines the productivity of a recombinant hemagglutinin influenza vaccine produced by insect cellsGoogle Scholar
  41. Mena JA, Kamen AA (2011) Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 10:1063–1081PubMedCrossRefGoogle Scholar
  42. Mena JA, Ramírez OT, Palomares LA (2003) Titration of non-occluded baculovirus using a cell viability assay. Biotechniques 34:260–264PubMedGoogle Scholar
  43. Mena JA, Ramírez OT, Palomares LA (2007) Population kinetics during simultaneous infection of insect cells with two recombinant baculoviruses for the production of virus-like particles. BMC Biotechnol 7:39PubMedCentralPubMedCrossRefGoogle Scholar
  44. Mendonça RZ, Palomares LA, Ramírez OT (1999) An insight into insect cell metabolism through selective nutrient manipulation. J Biotechnol 72:61–75CrossRefGoogle Scholar
  45. Mitchell-Logean C, Murhammer DW (1997) Bioreactor headspace purging reduces dissolved carbon dioxide accumulation in insect cell cultures and enhances cell growth. Biotechnol Prog 13:875–877CrossRefGoogle Scholar
  46. Monteiro F, Bernal V, Saelens X, Lozano AB, Bernal C, Sevilla A, Carrondo MJT, Alves PM (2014) Metabolic profiling of insect cell lines: unveiling cell line determinants behind system’s productivity. Biotechnol Bioeng 111:816–828PubMedCrossRefGoogle Scholar
  47. Murhamer D, Goochee C (1988) Scale up of insect cell cultures: protective effects of Pluronic F68. Biotechnology 6:1411–1418CrossRefGoogle Scholar
  48. Nienow AW (2006) Reactor engineering in large scale animal cell culture. Cytotechnology 50:9–33PubMedCentralPubMedCrossRefGoogle Scholar
  49. Ohman L, Alrcon M, Ljunggren J, Ramqvist AK, Haggstrom L (1996) Glutamine is not an essential amino acid for Sf-9 insect cells. Biotechnol Lett 18:765–770CrossRefGoogle Scholar
  50. Palomares LA, Ramírez OT (1996) The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnology 22:225–237PubMedCrossRefGoogle Scholar
  51. Palomares LA, Ramírez OT (1998) Insect cell culture: recent advances, bioengineering challenges and implication in protein production. In: Galindo E, Ramírez OT (eds) Advances in bioprocess engineering II. Kluwer Academic, Dordrecht, pp 25–52CrossRefGoogle Scholar
  52. Palomares LA, Ramírez OT (2002) Complex N-glycosylation of recombinant proteins by insect cells. Bioprocessing 1(3):70–73Google Scholar
  53. Palomares LA, Ramírez OT (2009) Challenges for the production of virus-like particles in insect cells: the case of rotavirus-like particles. Biochem Eng J 45:158–167CrossRefGoogle Scholar
  54. Palomares LA, González M, Ramírez OT (2000) Evidence of Pluronic F-68 direct interaction with insect cells: impact on shear protection, recombinant protein and baculovirus production. Enzyme Microb Technol 26:324–331PubMedCrossRefGoogle Scholar
  55. Palomares LA, López S, Ramírez OT (2002) Strategies for manipulating the relative concentration of recombinant rotavirus structural proteins during simultaneous production by insect cells. Biotechnol Bioeng 78:635–644PubMedCrossRefGoogle Scholar
  56. Palomares LA, López S, Ramírez OT (2004) Utilization of oxygen uptake rate to assess the role of glucose and glutamine in the metabolism of insect cell cultures. Biochem Eng J 19(1):87–93CrossRefGoogle Scholar
  57. Palomares LA, Estrada-Mondaca S, Ramírez OT (2006) Principles and applications of the insect-cell-baculovirus expression vector system. In: Ozturk S, Hu WS (eds) Cell culture technology for pharmaceutical and cellular applications. Taylor and Francis, Nueva York, pp 627–692Google Scholar
  58. Palomares LA, Mena JA, Ramírez OT (2012) Simultaneous expression of recombinant proteins in the insect cell-baculovirus system: production of virus-like particles. Methods 53:389–395CrossRefGoogle Scholar
  59. Palomares LA, Pedroza JC, Ramírez OT (2001) Cell size as a tool to predict protein productivity of the insect cell-baculovirus expression system. Biotechnol Lett 23:359–364CrossRefGoogle Scholar
  60. Peixoto C, Sousa MFQ, Silva AC, Carrondo MJT, Alves PM (2007) Downstream processing of triple layered rotavirus like particles. J Biotechnol 127:452–461PubMedCrossRefGoogle Scholar
  61. Plascencia-Villa G, Saniger JM, Ascencio JA, Palomares LA, Ramírez OT (2009) Use of recombinant rotavirus VP6 nanotubes as a multifunctional template for the synthesis of nanobiomaterials functionalized with metals. Biotechnol Bioeng 104:871–881PubMedCrossRefGoogle Scholar
  62. Plascencia-Villa G, Mena JA, Castro-Acosta R, Fabián JC, Ramírez OT, Palomares LA (2011) Strategies for the purification and characterization of protein scaffolds for the production of hybrid nanobiomaterials. J Chromatogr B Analyt Technol Biomed Life Sci 879:1105–1111PubMedCrossRefGoogle Scholar
  63. Ramírez OT, Mutharasan T (1990) The role of plasma membrane fluidity on the shear sensitivity of hybridomas grown under hydrodynamic stress. Biotechnol Bioeng 36:911–920PubMedCrossRefGoogle Scholar
  64. Rhiel M, Mitchell-Logean CM, Murhammer DW (1997) Comparison of Trichoplusia ni BTI-Tn-5B1-4 (High Five) and Spodoptera frugiperda Sf-9 insect cell metabolism in suspension cultures. Biotechnol Bioeng 55:696–706Google Scholar
  65. Rohrmann GF (2013) Baculovirus molecular biology, 3rd edn. [Internet]. National Center for Biotechnology Information (US), Bethesda.
  66. Roldao A, Vieira HLA, Alves PM, Oliveira R, Carrondo MJT (2006) Intracellular dynamics in rotavirus-like particle production: evaluation of multigene and monocistronic infection strategies. Proc Biochem 41:2188–2199CrossRefGoogle Scholar
  67. Roldao A, Oliveira R, Carrondo MJT, Alves PM (2009) Error assessment in recombinant baculovirus titration: evaluation of different methods. J Virol Methods 159:69–80PubMedCrossRefGoogle Scholar
  68. Smith GE, Summers MD, Fraser MJ (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3:2156–2165PubMedCentralPubMedGoogle Scholar
  69. Summers MD, Smith GE (1987) A manual of methods for baculovirus vectors and insect cell culture procedures, Texas Agricultural Experiment Station bulletin. Texas Agricultural Experiment Station, College StationGoogle Scholar
  70. Taticek RA, Shuler ML (1997) Effect of elevated oxygen and glutamine levels on foreign protein production at high cell densities using the insect cell-baculovirus expression system. Biotechnol Bioeng 54:142–152PubMedCrossRefGoogle Scholar
  71. Taticek RA, Choi C, Phan SE, Palomares LA, Shuler ML (2001) Comparison of growth and recombinant protein expression in two different insect cell lines in attached and suspension culture. Biotechnol Prog 17:676–684PubMedCrossRefGoogle Scholar
  72. Tomiya M, Narang S, Park J, Abdul-Tahman B, Choi O, Singh S, Hiratake J, Sakata K, Betenbaugh MJ, Palter KB, Lee YC (2006) Purification, characterization and cloning of a Spodoptera frugiperda Sf9 β-N-acetylhexosaminidase that hydrolyzes terminal N-acetylglucosamine on the N-glycan core. J Biol Chem 281:19545–19560PubMedCrossRefGoogle Scholar
  73. Torres-Vega MA, Vargas-Jerónimo RY, Montiel-Martínez AG, Muñoz-Fuentes RN, Zamorano-Carrillo A, Pastor-Flores AR, Palomares LA (In press) Delivery of glutamine synthetase gene by baculovirus vectors: a proof of concept for the treatment of acute hyperammonemia. Gene TherapyGoogle Scholar
  74. Trager W (1935) Cultivation of the virus of grasserie in silk-worm tissue cultures. J Exp Med 61:501–513PubMedCentralPubMedCrossRefGoogle Scholar
  75. Tremblay G, Mejia N, MacKenzie R (1992) The NADP-dependent methylenetetrahydrofolate synthetase is not expressed in Spodoptera frugiperda cells. J Biol Chem 267:8281–8285PubMedGoogle Scholar
  76. Urabe M, Ding C, Kotin RM (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 13:1935–1943PubMedCrossRefGoogle Scholar
  77. Vlak JM (2007) Professor Shang yin Gao (1909–1989): his legacy in insect cell culture and insect virology. J Invertebr Pathol 95:152–160PubMedCrossRefGoogle Scholar
  78. Wyatt SS (1956) Culture in vitro of tissue from the silkworm, Bombyx mori L. J Gen Physiol 39(6):841–852PubMedCentralPubMedCrossRefGoogle Scholar
  79. Wyatt GR, Loughheed TC, Wyatt SS (1956) The chemistry of insect hemolymph. J Gen Physiol 39(6):853–868PubMedCentralPubMedCrossRefGoogle Scholar
  80. Zeiser A, Elias CB, Voyer R, Jardin B, Kamen AA (2000) On-line monitoring of physiological parameters of insect cell cultures during the growth and production process. Biotechnol Prog 16:803–808PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Laura A. Palomares
    • 1
  • Mauricio Realpe
    • 2
  • Octavio T. Ramírez
    • 1
  1. 1.Departamento de Medicina Molecular y BioprocesosInstituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavacaMexico
  2. 2.Diagnóstico Clínico y Molecular DICLIMCuernavacaMexico

Personalised recommendations