Skip to main content

Single-Use Bioreactors for Animal and Human Cells

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

Single-use (SU) bioreactors are being increasingly used in production processes based on animal (i.e. mammalian and insect) and human cells. They are particularly suitable for the production of high-value products on small and medium scales, and in cases where fast and safe production is a requirement. Thus, it is not surprising that SU bioreactors have established themselves for screening studies, cell expansions, and product expressions where they are used for the production of pre-clinical and clinical samples of therapeutic antibodies and preventive vaccines. Furthermore, recent publications have revealed the potential of SU bioreactors for the production of cell therapeutics using human mesenchymal stem cells (hMSCs).

This chapter provides a perspective on current developments in SU bioreactors and their main applications. After briefly introducing the reader to the basics of SU bioreactor technology (terminology, historical milestones and characteristics compared to their reusable counterparts) an overview of the categories of currently available SU bioreactor types is provided. SU bioreactor instrumentation is then examined, before discussing well-established and novel applications of SU bioreactors for animal and human cells. This includes descriptions of the engineering characteristics of often-used types of SU bioreactors, covering wave-mixed, stirred, orbitally shaken systems and fixed-bed systems. In this context, the scaling-up of geometrically and non-geometrically similar SU bioreactors is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D:

One-dimensional

2D:

Two-dimensional

3D:

Three-dimensional

bDtBPP:

Bis(2,4-di-tert-butyl phenyl) phosphate

BEVS:

Baculovirus expression vector system

CFD:

Computational fluid dynamics

CHO:

Chinese Hamster Ovary (cells)

CMO:

Contract manufacturing organization

DoE:

Design of experiments

DO:

Dissolved oxygen

EDR:

Energy dissipation rate

EVA:

Ethylene vinyl acetate

hMSCs:

Human mesenchymal stem cells

hADSCs:

Human adipose-derived mesenchymal stem cells

hBM-hMSCs:

Human bone(marrow)-derived mesenchymal stem cells

HPTS:

Hydroxypyrene trisulfonate acid

LED:

Light-emitting diode

mAbs:

Monoclonal antibodies

MDCK:

Madin-Darby Canine Kidney (cells)

MEMS:

Micro-electro-mechanical systems

NK:

Natural killer (cells)

PE:

Polyethylene

PET:

Polyethylene terephthalate

PIV:

Particle image velocimetry

pO2 :

Partial pressure of oxygen

pCO2 :

Partial pressure of carbon dioxide

PTFE:

Polytetrafluoroethylene

PVC:

Polyvinylchloride

QbD:

Quality by Design

RANS:

Reynolds averaged Navier-Stokes (equations)

RFID:

Radio-frequency identification

RT:

Ruston turbine

SBI:

Segment blade impeller

Sf-9:

Spodoptera frugiperda (subclone 9)

SU:

Single-use

TBPP:

Tris(2,4-di-tert-butylphenyl) phosphite

VLP:

Virus-like particle

WCB:

Working cell bank

WVB:

Working virus bank

WFI:

Water for injections

References

  • Adams T, Noack U, Frick T, Greller G, Fenge C (2011) Increasing efficiency in protein supply and cell production by combining single-use bioreactor technology and perfusion. Biopharm Int Suppl 24:S4–S11

    Google Scholar 

  • Alahari A (2009) Implementing cost reduction strategies for HuMab manufacturing processes. Bioproc Int 7(S1):48–54

    CAS  Google Scholar 

  • Alcamo R, Micale G, Grisafi F, Brucato A, Ciofalo M (2005) Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine. Chem Eng Sci 60:2303–2316

    CAS  Google Scholar 

  • Al-Rubeai M, Singh RP, Goldman MH, Emery AN (1995) Death mechanisms of animal cells in conditions of intensive agitation. Biotechnol Bioeng 45:463–472

    CAS  PubMed  Google Scholar 

  • Altaras GM, Eklund C, Ranucci C, Maheshwari G (2007) Quantitation of interaction of lipids with polymer surfaces in cell culture. Biotechnol Bioeng 96:999–1007

    CAS  PubMed  Google Scholar 

  • Anderlei T, Cesana C, Bürki C, De Jesus M, Kühner M, Wurm F, Lohser R (2009) Shaken bioreactors provide culture alternative. Genet Eng Biotechnol News 29:44

    Google Scholar 

  • Aranha H (2004) Disposable systems. Bioprocess Int 2(S9):6–16

    Google Scholar 

  • Armstrong W (1994) Polarographic oxygen electrodes and their use in plant aeration studies. Proc R Soc Edinburgh 102B:511–527

    Google Scholar 

  • Ayranci I, Machado MB, Madej AM, Derksen JJ, Nobes DS, Kresta SM (2012) Effect of geometry on the mechanisms for off-bottom solids suspension in a stirred tank. Chem Eng Sci 79:163–176

    CAS  Google Scholar 

  • Ball P, Brown C, Lindström K (2009) 21st century vaccine manufacturing. Bioproc Int 7(4):18–26

    Google Scholar 

  • Bernard F, Chevalier E, Cappia J-M, Heule M, Paust T (2009) Disposable pH sensors. Bioproc Int 7(S1):32–36

    CAS  Google Scholar 

  • Bink L, Furey J (2010) Using in-line disposable pressure sensors to evaluate depth filter performance. Bioproc Int 8(2):44–49

    Google Scholar 

  • Bögli NC, Ries C, Adams T, Greller G, Eibl D, Eibl R (2012) Large-scale, insect-cell-based vaccine development. Bioproc Int 10:40–49

    Google Scholar 

  • Bonham-Carter J, Shevitz J (2011) A brief history of perfusion biomanufacturing. Bioproc Int 9:24–31

    Google Scholar 

  • Brecht R (2010) Disposable bioreactors: maturation into pharmaceutical glycoprotein manufacturing. Adv Biochem Eng Biotechnol 115:1–31

    Google Scholar 

  • Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: I. Power consumption measurement in unbaffled flasks at low liquid viscosity. Biotechnol Bioeng 68:589–593

    PubMed  Google Scholar 

  • Cameau E, Abreu G De, Desgeorges A, Kornmann H, Charbaut E (2010) Evaluation of a single-use bioreactor for the fed-batch production of a monoclonal antibody. Biopharm Int Suppl 12–15

    Google Scholar 

  • Chaubard J-F, Dessoy S, Ghislain Y, Gerkens P, Barbier B, Battisti R, Peeters L (2010) Disposable bioreactors for viral vaccine production: challenges and opportunities. Biopharm Int Suppl 22

    Google Scholar 

  • Chisti Y (2000) Animal-cell damage in sparged bioreactors. Trends Biotechnol 18:420–432

    CAS  PubMed  Google Scholar 

  • Cierpka K, Elseberg CL, Niss K, Kassem M, Salzig D, Czermak P (2013) hMSC production in disposable bioreactors with regards to GMP and PAT. Chem Ing Tech 85:67–75

    CAS  Google Scholar 

  • Cino J, Mirro R, Kedzierski S (2003) An update in the advantages of Fibra-Cel disks for cell culture. Appl Note Eppendorf

    Google Scholar 

  • Clark KJR, Furey J (2007) Application of disposable pressure sensors to a postcentrifugation filtration process. Bioproc Int 5(S4):62–65

    Google Scholar 

  • Cox MMJ (2012) Recombinant protein vaccines produced in insect cells. Vaccine 30:1759–1766

    CAS  PubMed  Google Scholar 

  • De Jesus MJ, Girard P, Bourgeois M, Baumgartner G, Jacko B, Amstutz H, Wurm FM (2004) TubeSpin satellites: a fast track approach for process development with animal cells using shaking technology. Biochem Eng J 17:217–223

    Google Scholar 

  • De Jongh WA, Salgueiro S, Dyring C (2013) The use of Drosophila S2 cells in R&D and bioprocessing. Pharm Bioproc 1:197–213

    Google Scholar 

  • Dekarski J (2013) Scalability of the Mobius® Cell Ready single-use bioreactor systems. Biopharm Int Suppl 26:11–17

    Google Scholar 

  • Diekmann S, Dürr C, Herrmann A, Lindner I, Jozic D (2011) Single use bioreactors for the clinical production of monoclonal antibodies – a study to analyze the performance of a CHO cell line and the quality of the produced monoclonal antibody. BMC Proc 5(Suppl 8):P103

    PubMed Central  Google Scholar 

  • dos Santos F, Andrade PZ, Abecasis MM, Gimble JM, Chase LG, Campbell AM, Boucher S, Vemuri MC, da Silva CL, Cabral JMS (2011) Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng Part C Methods 17:1201–1210

    PubMed Central  PubMed  Google Scholar 

  • Drugmand J-C, Esteban G, Alaoui N, Jafâr N, Havelange N, Berteau O, Castillo J (2009) On-line monitoring: animal cell cultivation in iCELLis fixed-bed reactor using dielectric measurements. In: Jenkins N, Barron N, Alves P (eds) Proceedings of the 21st annual meeting of the European Society for Animal Cell Technology. Dublin, Ireland, Springer Sciences and Business Media, pp 395–399

    Google Scholar 

  • Drugmand J-C, Vertommen N, Knowles S, Debras F, Castillo J (2013) Linear scalability of virus production in the IntegrityTM iCELLisTM disposable fixed-bed bioreactor from bench-scale to industrial scale. Appl Note

    Google Scholar 

  • Duvar S, Müthing J, Mohr H, Lehmann J (1996) Scale up cultivation of primary human umbilical vein endothelial cells on microcarriers from spinner vessels to bioreactor fermentation. Cytotechnology 21:61–72

    CAS  PubMed  Google Scholar 

  • Eibl R, Eibl D (2009a) Disposable bioreactors in cell culture-based upstream processing. Bioprocess Int 7(S1):18–23

    CAS  Google Scholar 

  • Eibl R, Eibl D (2009b) Application of disposable bag bioreactors in tissue engineering and for the production of therapeutic agents. Adv Biochem Eng Biotechnol 112:183–207

    CAS  PubMed  Google Scholar 

  • Eibl R, Eibl D (2010) Single-use bioreactors: an overview. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Hoboken, NJ, USA: John Wiley & Sons, pp 33–51

    Google Scholar 

  • Eibl R, Kaiser S, Lombriser R, Eibl D (2010a) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86:41–49

    CAS  PubMed  Google Scholar 

  • Eibl R, Werner S, Eibl D (2010b) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Eng Biotechnol 115:55–87

    Google Scholar 

  • Eibl R, Steiger N, Wellnitz S, Vicente T, John C, Eibl D (2013) Fast single-use VLP vaccine productions based on insect cells and the baculovirus expression vector system: influenza as case study. Adv Biochem Eng Biotechnol

    Google Scholar 

  • Eibl R, Löffelholz C, Eibl D (2014a) Disposable bioreactors for inoculum production and protein expression. Methods Mol Biol 1104:265–284

    PubMed  Google Scholar 

  • Eibl R, Steiger N, Fritz C, Eisenkrätzer D, Bär J, Müller D, Eibl D (2014) Standardized cell culture test for the early identification of critical films for CHO cell lines and chemically defined culture media. DECHEMA, Frankfurt a.M. ISBN 978-3-89746-149-9

    Google Scholar 

  • Falkenberg FW (1998) Production of monoclonal antibodies in the miniPERMTM bioreactor: comparison with other hybridoma culture methods. Res Immunol 149:560–570

    CAS  PubMed  Google Scholar 

  • Farouk A, Moncaubig F (2011) Engineering analysis of mixing in ATMI’s bioreactors using Computational fluid dynamics. Poster presented at 22nd ESACT meeting, Vienna. Available online. http://www.atmi.com/ls-assets/pdfs/bioreactors/padreactor/Integrity_Padreactor_Poster_Esact_Digital_A4.pdf. Last accessed 27 Jan 2014

  • Fernald A, Pisania A, Abdelgadir E, Milling J, Marvell T, Steininger B (2009) Scale-up and comparison studies evaluating disposable bioreactors and probes. Biopharm Int:16

    Google Scholar 

  • Fietz F (2013) Evaluierung eines neuen Abgasanalysators für Applikationen in der Zellkultur. Master thesis (unpublished), Anhalt University of Applied Sciences

    Google Scholar 

  • Fritzsche M, Barreiro CG, Hitzmann B, Scheper T (2007) Optical pH sensing using spectral analysis. Sensor Actuat B Chem 128:133–137

    CAS  Google Scholar 

  • Furey J (2007) Disposable large-scale pressure sensors. Genet Eng Biotechnol News 27

    Google Scholar 

  • Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    CAS  PubMed  Google Scholar 

  • Genzel Y, Behrendt I, König S, Sann H, Reichl U (2004) Metabolism of MDCK cells during cell growth and influenza virus production in large-scale microcarrier culture. Vaccine 22:2202–2208

    CAS  PubMed  Google Scholar 

  • Genzel Y, Fischer M, Reichl U (2006) Serum-free influenza virus production avoiding washing steps and medium exchange in large-scale microcarrier culture. Vaccine 24:3261–3272

    CAS  PubMed  Google Scholar 

  • Genzel Y, Dietzsch C, Rapp E, Schwarzer J, Reichl U (2010) MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation. Appl Microbiol Biotechnol 88:461–475

    CAS  PubMed  Google Scholar 

  • George M, Farooq M, Dang T, Cortes B, Liu J, Maranga L (2010) Production of cell culture (MDCK) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process. Biotechnol Bioeng 106:906–917

    CAS  PubMed  Google Scholar 

  • Glindkamp A, Riechers D, Rehbock C, Hitzmann B, Scheper T, Reardon KF (2010) Sensors in disposable bioreactors status and trends. In: Eibl R, Eibl D (eds) Disposable bioreactors, vol 115, Advances in biochemical engineering/biotechnology. Springer, Berlin/Heidelberg, pp 145–169

    Google Scholar 

  • Godoy-Silva R, Mollet M, Chalmers JJ (2009) Evaluation of the effect of chronic hydrodynamical stresses on cultures of suspensed CHO-6E6 cells. Biotechnol Bioeng 102:1119–1130

    CAS  PubMed  Google Scholar 

  • Gossain V, Mirro R (2010) Linear scale-up of cell cultures. Bioproc Int 8:56–62

    Google Scholar 

  • Gossain V, Mirro R, Emerson EJ, Kedzierski S (2010) Hybrid system aims to streamline cell culture. Genet Eng Biotechnol News 30

    Google Scholar 

  • Hahn T (2013) Practical applications of single-use technology for the production of VLP and nanoparticle vaccines. In: Eibl R, Eibl D (eds) BioTech2013 Single-use technology in biopharmaceutical manufacture. Wädenswil

    Google Scholar 

  • Hammond M, Nunn H, Rogers G, Lee H, Marghitoiu A-L, Perez L, Nashed-Samuel Y, Anderson C, Vandiver M, Kline S (2013) Identification of a leachable compound detrimental to cell growth in single-use bioprocess containers. PDA J Pharm Sci Technol 67:123–134

    CAS  PubMed  Google Scholar 

  • Hanson MA, Brorson KA, Moreira AR, Rao G (2009) Comparisons of optically monitored small-scale stirred tank vessels to optically controlled disposable bag bioreactors. Microb Cell Fact 8:44

    PubMed Central  PubMed  Google Scholar 

  • Hatton T, Barnett S, Rashid K (2012) CHO cell culture with single-use new Brunswick™ CelliGen® BLU Packed-Bed Fibra-Cel® Basket. Application note no. AA254. Eppendorf. Available online. http://newbrunswick.eppendorf.com/fileadmin/nbs/data/pdf/AA254_CHO_culture_BLU_Fibra-Cel.pdf. Last accessed 27 Jan 2014

  • Heidemann R, Mered M, Wang DQ, Gardner B, Zhang C, Michaels J, Henzler H-J, Abbas N, Konstantinov K (2002) A new seed-train expansion method for recombinant mammalian cell lines. Cytotechnology 38:99–108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henzler H-J, Kauling DJ (1993) Oxygenation of cell cultures. Bioprocess Biosyst Eng 9:61–75

    CAS  Google Scholar 

  • Hewitt CJ, Lee K, Nienow AW, Thomas RJ, Smith M, Thomas CR (2011) Expansion of human mesenchymal stem cells on microcarriers. Biotechnol Lett 33:2325–2335

    CAS  PubMed  Google Scholar 

  • Hildinger M, Wurm F, Stettler M, Dejesus M (2009) Cell cultivation and production of recombinant proteins by means of an orbital shake bioreactor system with disposable bags at the 1,500 liter scale. Patent US2009/0233334A1

    Google Scholar 

  • Hirschel M (2011) Novel uses for hollow fiber bioreactors. Genet Eng Biotechnol News 31:42–44

    Google Scholar 

  • Ho SC, Tong YW, Yang Y (2013) Generation of monoclonal antibody-producing mammalian cell lines. Pharm Bioproc 1:71–87

    Google Scholar 

  • Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borques-Ojeda O, Taylor C, Yeh R, Capacio V, Olszewska M, Hosey J, Sadelain M, Brentjens RJ, Riviéere J (2009) Manufacturing validation of biologically functional T cells targeted to CD 19 antigen for autologous adoptive cell therapy. J Immunother 32:169–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hopkinson J (1985) Hollow fiber cell culture systems for economical cell-product manufacturing. Bio/Technology 3:225–230

    Google Scholar 

  • Horvath B, Tsang VL, Lin W, Dai XP, Kunas K, Frank G (2013) A generic growth test method for improving quality control of disposables in industrial cell culture. Biopharm Int 23:34–41

    Google Scholar 

  • Hu AY-C, Weng T-C, Tseng Y-F, Chen Y-S, Wu C-H, Hsiao S, Chou A-H, Chao H-J, Gu A, Wu S-C, Chong P, Lee M-S (2008) Microcarrier-based MDCK cell culture system for the production of influenza H5N1 vaccines. Vaccine 26:5736–5740

    CAS  PubMed  Google Scholar 

  • Hui M (2009) A method to increase dissolved oxygen in a culture vessel. Patent EP2021459 A1

    Google Scholar 

  • Hundt B, Best C, Schlawin N, Kassner H, Genzel Y, Reichl U (2007) Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave Bioreactor microcarrier culture in 1–10 L scale. Vaccine 25:3987–3995

    CAS  PubMed  Google Scholar 

  • Imseng N (2011) Biomass and terpenoid production of Nicotiana tabacum hairy roots in single‐use bioreactors. Master thesis (unpublished), Zurich University of Applied Sciences

    Google Scholar 

  • Jia Q, Li H, Hui M, Hui N, Joudi A, Rishton G, Bao L, Shi M, Zhang X, Luanfeng L, Xu J, Leng G (2008) A bioreactor system based on a novel oxygen transfer method. Bioprocess Int 6:66–78

    CAS  Google Scholar 

  • Jing D, Sunil N, Punreddy S, Aysola M, Kehoe D, Murrel J, Rook M, Niss K (2013) Growth kinetics of human mesenchymal stem cells in a 3-L single-use stirred-tank bioreactor. Biopharm Int 26:28–38

    CAS  Google Scholar 

  • Josefsberg JO, Buckland B (2012) Vaccine process technology. Biotechnol Bioeng 109:1443–1460

    CAS  PubMed  Google Scholar 

  • Jossen V, Kaiser SC, Schirmaier C, Greller G, Tappe A, Eibl D, Siehoff A, van den Bos C, Eibl R (2014) Design and qualification of the ideal single-use bioreactor for the expansion of human mesenchymal stem cells at benchtop scale. Pharm Bioproc (in peer-review)

    Google Scholar 

  • Junker BH (2004) Scale-up methodologies for Escherichia coli and yeast fermentation processes. J Biosci Bioeng 97:347–364

    CAS  PubMed  Google Scholar 

  • Kadarusman J, Bhatia R, McLaughlin J, Lin WR (2005) Growing cholesterol-dependent NS0 myeloma cell line in the wave bioreactor system: overcoming cholesterol-polymer interaction by using pretreated polymer or inert fluorinated ethylene propylene. Biotechnol Prog 21:1341–1346

    CAS  PubMed  Google Scholar 

  • Kaiser SC (2009) Theoretische und experimentelle Untersuchungen zur Bestimmung der Mischzeit und des Sauerstotransfers in Bioreaktoren. Master thesis (unpublished), Anhalt University of Applied Sciences

    Google Scholar 

  • Kaiser SC, Löffelholz C, Werner S, Eibl D (2011a) CFD for characterizing standard and single-use stirred cell culture bioreactors. In: Minin IV, Minin OV (eds) Computational Fluid Dynamics. InTech, pp 97–122

    Google Scholar 

  • Kaiser SC, Eibl R, Eibl D (2011b) Engineering characteristics of a single-use stirred bioreactor at bench-scale: the Mobius Cell Ready 3L bioreactor as a case study. Eng Life Sci 11:359–368

    CAS  Google Scholar 

  • Kaiser S, Jossen V, Schirmaier C, Eibl D, Brill S, van den Bos C, Eibl R (2013) Fluid flow and cell proliferation of mesenchymal adipose-derived stem cells in small-scale, stirred, single-use bioreactors. Chem Ing Tech 85:95–102

    CAS  Google Scholar 

  • Kamen AA, Bédard C, Tom R, Perret S, Jardin B (1996) On-line monitoring of respiration in recombinant-baculovirus infected and uninfected insect cell bioreactor cultures. Biotechnol Bioeng 50:36–48

    CAS  PubMed  Google Scholar 

  • Kauling J, Brod H, Jenne M, Waldhelm A, Langer U, Bödeker B (2013) Novel, rotary oscillated, scalable single-use bioreactor technology for the cultivation of animal cells. Chem Ing Tech 85:127–135

    CAS  Google Scholar 

  • Kensy F, Zimmermann HF, Knabben I, Anderlei T, Trauthwein H, Dingerdissen U, Büchs J (2005) Oxygen transfer phenomena in 48-well microtiter plates: determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth. Biotechnol Bioeng 89:698–708

    CAS  PubMed  Google Scholar 

  • Kilian R (2013) Managing contamination risk while maintaining quality in cell-therapy manufacturing. Bioproc Int 11:26–29

    Google Scholar 

  • Kim JC, Seong JH, Lee B, Hashimura Y, Groux D, Oh DJ (2013) Evaluation of a novel pneumatic bioreactor system for culture of recombinant Chinese hamster ovary cells. Biotechnol Bioproc Eng 18:801–807

    CAS  Google Scholar 

  • Kittredge A, Gowda S, Ring J, Thiel K, Simler J, Hansen A, Cieciuch J, Mumira J, Dinn L, Tran C, Burdick JA, Rapiejko, PJ (2011) Characterization and performance of the Mobius® CellReady 200 L bioreactor system: the next generation of single-use bioreactors. Poster presented at 22nd ESACT meeting, Vienna. Available online. http://www.millipore.com/publications.nsf/a73664f9f981af8c852569b9005b4eee/f57e3666e9be6877852578b90049bf73/$FILE/ps32320000_EMD.pdf. Last accessed 24 Jan 2014

  • Klimant I (2003) Method and device for referencing fluorescence intensity signals. Patent US 6602716 B1

    Google Scholar 

  • Klöckner W, Gacem R, Anderlei T, Raven N, Schillberg S, Lattermann C, Büchs J (2013) Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale. J Biol Eng 7:28

    PubMed Central  PubMed  Google Scholar 

  • Knazek RA, Gullino PM, Kohler PO, Dedrick RL (1972) Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science 178:65–67

    CAS  PubMed  Google Scholar 

  • Knevelman C, Hearle DC, Osman JJ, Khan M, Dean M, Smith M, Aiyedebinu A, Cheung K (2002) Characterization and operation of a disposable bioreactor as a replacement for conventional steam-in-place inoculum bioreactors for mammalian cell culture processes. Abstr Pap Am Chem Soc 224:U233

    Google Scholar 

  • Kumaresan T, Joshi JB (2006) Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem Eng J 115:173–193

    CAS  Google Scholar 

  • Kunas KT, Papoutsakis ET (1990) Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol Bioeng 36:476–483

    CAS  PubMed  Google Scholar 

  • Lai S-W, Hou Y-J, Che C-M, Pang H-L, Wong K-Y, Chang CK, Zhu N (2004) Electronic spectroscopy, photophysical properties, and emission quenching studies of an oxidatively robust perfluorinated platinum porphyrin. Inorg Chem 43:3724–3732

    CAS  PubMed  Google Scholar 

  • Langer ES (2011) Perfusion bioreactors are making a comeback, but industry misperceptions persist. Bioproc J 9(2):49–52

    Google Scholar 

  • Langer ES (2012) Ninth annual report and survey of biopharmaceutical manufacturing capacity and production. BioPlan Associates, 495 pages, www.bioplanassociates.com

  • Langheinrich C, Nienow AW, Eddleston T, Stevenson NC, Emery AN, Clayton TM, Slater NKH (2002) Oxygen transfer in stirred bioreactors under animal cell culture conditions. Food Bioprod Proc 80:39–44

    CAS  Google Scholar 

  • Lee B, Langer E, Zheng R (2010) Next-generation single-use bioreactor technology and the future of biomanufacturing: a summary from the manufacturer’s and user’ perspective. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Hoboken, NJ, USA: John Wiley & Sons, pp 183–195

    Google Scholar 

  • Legmann R, Schreyer HB, Combs RG, McCormick EL, Russo AP, Rodgers ST (2009) A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Biotechnol Bioeng 104:1107–1120

    CAS  PubMed  Google Scholar 

  • Lehmann K, Paradies M, Haavisto E, Beyer S, Vuolanto A, Lipinsk K (2013) iCELLis fixed-bed bioreactor system for the production of oncolytic adenovirus (CGTG-102) with A549 cells. Appl Note

    Google Scholar 

  • Lennaertz A, Knowles S, Drugmand J-C, Castillo J (2013) Viral vector production in the Integrity® iCELLis® single-use fixed-bed bioreactor, from bench-scale to industrial scale. BMC Proc 7:P59

    PubMed Central  Google Scholar 

  • Letellier B, Xuereb C, Swaels P, Hobbes P, Bertrand J (2002) Scale-up in laminar and transient regimes of a multi-stage stirrer, a CFD approach. Chem Eng Sci 57:4617–4632

    CAS  Google Scholar 

  • Li C-Y, Zhang X-B, Han Z-X, Akermark B, Sun L, Shen G-L, Yu R-Q (2006) A wide pH range optical sensing system based on a sol-gel encapsulated amino-functionalized corrole. Analyst 131:388–393

    CAS  PubMed  Google Scholar 

  • Liepe F, Sperling R, Jembere S (1998) Rührwerke – Theoretische Grundlagen, Auslegung und Bewertung. Eigenverlag FH Anhalt, Köthen

    Google Scholar 

  • Lindner P, Endres C, Bluma A, Höpfner T, Glindkamp A, Haake C, Landgrebe D, Riechers D, Baumfalk R, Hitzmann B, Scheper T, Reardon KF (2010) Disposable sensor systems. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Hoboken, NJ, USA: John Wiley & Sons, pp 67–81

    Google Scholar 

  • Löffelholz C (2013) CFD als Instrument zur bioverfahrenstechnischen Charakterisierung von single-use Bioreaktoren und zum Scale-up für Prozesse zur Etablierung und Produktion von Biotherapeutika. PhD thesis, Brandenburg University of Technology

    Google Scholar 

  • Löffelholz C, Kaiser SC, Werner S, Eibl D (2010) CFD as tool to characterize single-use bioreactors. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Hoboken, NJ, USA: John Wiley & Sons, pp 264–279

    Google Scholar 

  • Löffelholz C, Husemann U, Greller G, Meusel W, Kauling J, Ay P, Kraume M, Eibl R, Eibl D (2013a) Bioengineering parameters for single-use bioreactors: overview and evaluation of suitable methods. Chem Ing Tech 85:40–56

    Google Scholar 

  • Löffelholz C, Kaiser SC, Kraume M, Eibl R, Eibl D (2013b) Dynamic single-use bioreactors used in modern liter- and m(3)- scale biotechnological processes: engineering characteristics and scaling up. Adv Biochem Eng Biotechnol 138:1–44

    Google Scholar 

  • Magnusson A-C, Lundström T, Lundgren M (2011) Optimization of conditions for producing influenza virus in cell culture using single-use products. Bioproc Int 9:112–113

    Google Scholar 

  • Marx U (1998) Membrane-based cell culture technologies: a scientifically and economically satisfactory alternative to malignant ascites production for monoclonal antibodies. Res Immunol 149:557–559

    CAS  PubMed  Google Scholar 

  • McGlothlen M, Jing D, Martin C, Phillips M, Shaw R (2013) Use of microcarriers in the Mobius® Cell Ready bioreactors to support growth of adherent cells. BMC Proc 7:95–97

    Google Scholar 

  • Merten OW, Cruz PE, Rochette C, Geny-Fiamma C, Bouquet C, Gonçalves D, Danos O, Carrondo MJ (2001) Comparison of different bioreactor systems for the production of high titer retroviral vectors. Biotechnol Prog 17:326–335

    CAS  PubMed  Google Scholar 

  • Meuwly F, Loviat F, Ruffieuc PA, Bernard AR, Kadouri A, von Stockar U (2006) Oxygen supply for CHO cells immobilized on a packed-bed of Fibra-Cel disks. Biotechnol Bioeng 93:791–800

    CAS  PubMed  Google Scholar 

  • Meuwly F, Ruffieux P, Kadouri A, von Stockar U (2007) Packed-bed bioreactors for mammalian cell culture: bioprocess and biomedical applications. Biotechnol Adv 25:45–56

    CAS  PubMed  Google Scholar 

  • Micheletti M, Barrett T, Doig SD, Baganz F, Levy MS, Woodley JM, Lye GJ (2006) Fluid mixing in shaken bioreactors: implications for scale-up predictions from microliter-scale microbial and mammalian cell cultures. Chem Eng Sci 61:2939–2949

    CAS  Google Scholar 

  • Mills A, Chang Q (1993) Fluorescence plastic thin-film sensor for carbon dioxide. Analyst 118:839–843

    CAS  Google Scholar 

  • Mills A, Chang Q, McMurray N (1992) Equilibrium studies on colorimetric plastic film sensors for carbon dioxide. Anal Chem 64:1383–1389

    CAS  Google Scholar 

  • Minow B, de Witt H, Knabben I (2013) Fast track API manufacturing from shake flask to production scale using a 1000-L single-use facility. Chem Ing Tech 85:87–94

    CAS  Google Scholar 

  • Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ (2007) Acute hydrodynamic forces and apoptosis: a complex question. Biotechnol Bioeng 98:772–788

    CAS  PubMed  Google Scholar 

  • Moncaubeig F (2013) Simpler and more efficient viral vaccine manufacturing. Bioproc Int 11:8–11

    CAS  Google Scholar 

  • Müller M (2010) Realisierung eines zweistufigen Prozesses zur Plantibody-Produktion mit BY-2-Suspensionszellen im AppliFlex®-Bioreaktor. Bachelor thesis (unpublished), Anhalt University of Applied Sciences

    Google Scholar 

  • Muller N, Girard P, Hacker DL, Jordan M, Wurm FM (2005) Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnol Bioeng 89:400–406

    CAS  PubMed  Google Scholar 

  • Munkholm C, Walt DR, Milanovich FP (1988) A fiber-optic sensor for CO2 measurement. Talanta 35:109–112

    CAS  PubMed  Google Scholar 

  • Negrete A, Kotin RM (2007) Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales. J Virol Methods 145:155–161

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nienow AW (1997) On impeller circulation and mixing effectiveness in the turbulent flow regime. Chem Eng Sci 52:2557–2565

    CAS  Google Scholar 

  • Nienow AW (2006) Reactor engineering in large scale animal cell culture. Cytotechnology 50:9–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noack U, De Wilde D, Verhoeye F, Balbirnie E, Kahlert W, Adams T, Greller G, Reif O-W (2010) Single-use stirred tank reactor BIOSTAT CultiBag STR: characterisation and applications. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Hoboken, NJ, USA: John Wiley & Sons, pp 225–240

    Google Scholar 

  • Olmer R, Kropp C, Huether-Franken C, Zweigerdt R (2013) Scalable expansion of human pluripotent stem cells in Eppendorf BioBLU® 0.3 Single-use bioreactors (Application note no. 292)

    Google Scholar 

  • Oncül A, Kalmbach A, Genzel Y, Reichl U, Thévenin D (2009) Characterization of flow conditions in 2 L and 20 L wave bioreactors using computational fluid dynamics. Biotechnol Prog 26:101–110

    Google Scholar 

  • Oosterhuis NMG, van der Heiden P (2010) Mass transfer in the CELL-tainer® disposable bioreactor. In: Noll T (ed) Cells and culture. Proceedings of the 20th ESACT Meeting, Dresden, Germany, vol 4. Springer Science+Business Media, pp 371–373

    Google Scholar 

  • Oosterhuis NM, Neubauer P, Junne S (2013) Single-use bioreactors for microbial cultivation. Pharm Bioproc 1:167–177

    Google Scholar 

  • Ott KD (2011) Are single-use technologies changing the game? Bioproc Int 9(Suppl 2):48–51

    Google Scholar 

  • Paldus BA, Selker MD (2010) Bioinformatics and single use. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Hoboken, NJ, USA: John Wiley & Sons, pp 83–90

    Google Scholar 

  • Palomares LA, Ramírez OT (2009) Challenges for the production of virus-like particles in insect cells: the case of rotavirus-like particles. Biochem Eng J 45:158–167

    CAS  Google Scholar 

  • Patel G, Fettig M, Szczypka M (2012) SoloHill microcarriers in a 25-L PadReactorTM single-use bioreactor. Bioproc Int 10:22

    Google Scholar 

  • Patwardhan AW (2001) Prediction of flow characteristics and energy balance for a variety of downflow impellers. Ind Eng Chem Res 40:3806–3816

    CAS  Google Scholar 

  • Patwardhan AW, Joshi JB (1999) Relation between flow pattern and blending in stirred tanks. Ind Eng Chem Res 38:3131–3143

    CAS  Google Scholar 

  • Peter CP, Suzuki Y, Büchs J (2006) Hydromechanical stress in shake flasks: correlation for the maximum local energy dissipation rate. Biotechnol Bioeng 93:1164–1176

    CAS  PubMed  Google Scholar 

  • Platas Barradas O, Jandt U, Da Minh Phan L, Villanueva ME, Schaletzky M, Rath A, Freund S, Reichl U, Skerhutt E, Scholz S, Noll T, Sandig V, Pörtner R, Zeng A-P (2012) Evaluation of criteria for bioreactor comparison and operation standardization for mammalian cell culture. Eng Life Sci 12:518–528

    CAS  Google Scholar 

  • Qualitz J (2009) Using fluorescence-based sensing to accelerate process development. Biopharm Int 22:50

    CAS  Google Scholar 

  • Rafiq QA, Coopman K, Hewitt CJ (2013) Scale-up of human mesenchymal stem cell culture: current technologies and future challenges. Curr Opin Chem Eng 2:8–16

    Google Scholar 

  • Rao G, Kostov Y, Moreira A, Frey D, Hanson M, Jornitz M, Reif O-W, Baumfalk R, Qualitz J (2009) Non-invasive sensors as enablers of “smart” disposables. Bioproc Int 7(S1):24–27

    CAS  Google Scholar 

  • Ries C (2008) Untersuchung zum Einsatz von Einwegbioreaktoren für die auf Insektenzellen basierte Produktion von internen und externen Proteinen. Diploma thesis (unpublished), Zurich University of Applied Sciences

    Google Scholar 

  • Rodriguez R, Castillo J, Giraud S (2010) Demonstrated performance of a disposable bioreactor with an anchorage-dependent cell line. Bioproc Int 8:74–77

    Google Scholar 

  • Rowley J, Abraham E, Campbell A, Brandwein H, Oh S (2012) Meeting lot-size challenges of manufacturing adherent cells for therapy. Bioproc Int 10:16–22

    CAS  Google Scholar 

  • Schirmaier C, Jossen V, Kaiser SC, Jürgerkes F, Brill S, Safavi-Nab A, Siehoff A, van den Bos C, Eibl D, Eibl R (2014) Scale-up of mesenchymal adipose tissue-derived stem cell production in stirred single-use bioreactors under low-serum conditions. Eng Life Sci 14(3):292–303

    Google Scholar 

  • Schmid G (1996) Insect cell cultivation: growth and kinetics. Cytotechnology 20:43–56

    CAS  PubMed  Google Scholar 

  • Schneditz D, Kenner T, Heimel H, Stabinger H (1989) A sound-speed sensor for the measurement of total protein-concentration in disposable, blood-fused tubes. J Acoust Soc Am 86:2073–2080

    Google Scholar 

  • Schouwenberg JE, van der Velden-de Groot T, Blueml G (2010) Vaccine production utilizing the potential of microcarriers in disposable bioreactor. In: Noll T (ed) Cells and culture. ESACT proceedings. Springer, pp 795–801

    Google Scholar 

  • Schultz JB, Giroux D (2011) 3-L to 2,500-L single-use bioreactors, state of the art solutions for cell culture processes and applications. Bioproc Int 9:120

    Google Scholar 

  • Schwander E, Rasmussen H (2005) Scalable, controlled growth of adherent cells in disposable multilayer format. Genet Eng Biotechnol News 25:29

    Google Scholar 

  • Shiragami N (1997) Effect of shear rate on hybridoma cell metabolism. Bioproc Eng 16:345–347

    CAS  Google Scholar 

  • Shukla AA, Gottschalk U (2013) Single-use disposable technologies for biopharmaceutical manufacturing. Trends Biotechnol 31:147–154

    CAS  PubMed  Google Scholar 

  • Shukla AA, Mostafa S, Wilson M, Lange D (2012) Vertical integration of disposables in biopharmaceutical drug substance manufacturing. Bioproc Int 10:34–47

    CAS  Google Scholar 

  • Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30:149–158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh V (2001) Method for culturing cells using wave-induced agitation. Patent US 6190913 B1

    Google Scholar 

  • Smelko JP, Wiltberger KR, Hickman EF, Morris BJ, Blackburn TJ, Ryll T (2011) Performance of high intensity fed-batch mammalian cell cultures in disposable bioreactor systems. Biotechnol Prog 27:1358–1364

    CAS  PubMed  Google Scholar 

  • Smith CG, Greenfield PF (1992) Mechanical agitation of hybridoma suspension cultures: metabolic effects of serum, pluronic F68, and albumin supplements. Biotechnol Bioeng 40:1045–1055

    CAS  PubMed  Google Scholar 

  • Spichiger S, Spichiger-Keller UE (2010) New single-use sensors for online measurement of glucose and lactate: the answer to the PAT initiative. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Hoboken, NJ, USA: John Wiley & Sons, pp 264–279

    Google Scholar 

  • Stettler M, Zhang X, Anderlei T, De Jesus M, Lefebvre P, Hacker DL, Wurm FM (2010) Development of pilot-scale orbital shake bioreactors: ideal for cost-effective and efficient transient gene expression. In: Noll T (ed) ESACT proceedings, vol 4. Springer, pp 183–186

    Google Scholar 

  • Sun B, Yu X, Kong W, Sun S, Yang P, Zhu C, Zhang H, Wu Y, Chen Y, Shi Y, Zhang X, Jiang C (2013) Production of influenza H1N1 vaccine from MDCK cells using a novel disposable packed-bed bioreactor. Appl Microbiol Biotechnol 97:1063–1070

    CAS  PubMed  Google Scholar 

  • Surman C, Potyrailo RA, Morris WG, Wortley T, Vincent M, Diana R, Pizzi V, Carter J, Gach G (2011) Temperature-independent passive RFID pressure sensors for single-use bioprocess components. In: IEEE Int. Conf. RFID, Orlando, Florida, pp 78–84

    Google Scholar 

  • Sutlu T, Stellan B, Gilljam M, Quezada HC, Nahi H, Gahrton G, Alici E (2010) Clinical-grade, large-scale, feeder-free expansion of highly active human natural killer cells for adoptive immunotherapy using an automated bioreactor. Cytotherapy 12:1044–1055

    CAS  PubMed  Google Scholar 

  • Tan R-K, Eberhard W, Büchs J (2011) Measurement and characterization of mixing time in shake flasks. Chem Eng Sci 66:440–447

    CAS  Google Scholar 

  • Tang YJ, Ohashi R, Hamel JFP (2007) Perfusion culture of hybridoma cells for hyperproduction of IgG(2a) monoclonal antibody in a wave bioreactor-perfusion culture system. Biotechnol Prog 23:255–264

    CAS  PubMed  Google Scholar 

  • Tao Y, Shih J, Sinacore M, Ryll T, Yusuf-Makagiansar H (2011) Development and implementation of a perfusion-based high cell density cell banking process. Biotechnol Prog 27:824–829

    CAS  PubMed  Google Scholar 

  • Thomassen YE, van der Welle JE, van Eikenhorst G, van der Pol LA, Bakker WAM (2012) Transfer of an adherent Vero cell culture method between two different rocking motion type bioreactors with respect to cell growth and metabolic rates. Process Biochem 47:288–296

    CAS  Google Scholar 

  • Timmins NE, Kiel M, Günther M, Heazlewood C, Doran MR, Brooke G, Atkinson K (2012) Closed system isolation and scalable expansion of human placental mesenchymal stem cells. Biotechnol Bioeng 109:1817–1826

    CAS  PubMed  Google Scholar 

  • Tissot S, Farhat M, Hacker DL, Anderlei T, Kühner M, Comninellis C, Wurm F (2010) Determination of a scale-up factor from mixing time studies in orbitally shaken bioreactors. Biochem Eng J 52:181–186

    CAS  Google Scholar 

  • Tissot S, Oberbek A, Reclari M, Dreyer M, Hacker DL, Baldi L, Farhat M, Wurm FM (2011a) Efficient and reproducible mammalian cell bioprocesses without probes and controllers? N Biotechnol 28(4):382–390

    CAS  PubMed  Google Scholar 

  • Tissot S, Reclari M, Quinodoz S, Dreyer M, Monteil DT, Baldi L, Hacker DL, Farhat M, Discacciati M, Quarteroni A, Wurm FM (2011b) Hydrodynamic stress in orbitally shaken bioreactors. BMC Proc 5(Suppl 8):P39

    PubMed Central  Google Scholar 

  • Tran CA, Burton L, Russom D, Wagner JR, Jensen MC, Forman SJ, DiGiusto DL (2007) Manufacturing of large numbers of patent-specific T cells for adoptive immunotherapy: an approach to improving product safety, composition, and production capacity. J Immunother 30:644–654

    PubMed  Google Scholar 

  • Trounson A, Thakar RG, Lomax G, Gibbons D (2011) Clinical trials for stem cell therapies. BMC Med 9:52

    PubMed Central  PubMed  Google Scholar 

  • Uttamlal M, Walt DR (1995) A fiber-optic carbon dioxide sensor for fermentation monitoring. Nat Biotechnol 13:597–601

    CAS  Google Scholar 

  • van den Bos C, Keefe R, Schirmaier C, McCaman M (2014) Therapeutic human cells: manufacture for cell therapy/regenerative medicine. Adv Biochem Eng Biotechnol 38:61–97

    Google Scholar 

  • van’t Riet KV (1979) Review of measuring methods and results in mass transfer in stirred vessels. Ind Eng Chem Proc Des Dev 18:357–364

    Google Scholar 

  • Venkat RV, Chalmers JJ (1996) Characterization of agitation environments in 250 ml spinner vessel, 3 L, and 20 L reactor vessels used for animal cell microcarrier culture. Cytotechnology 22:95–102

    CAS  PubMed  Google Scholar 

  • Vicente T, Roldão A, Peixoto C, Carrondo MJT, Alves PM (2011) Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107(Suppl):S42–S48

    CAS  PubMed  Google Scholar 

  • Vorlop J, Lehmann J (1988) Scale-up of bioreactors for fermentation of mammalian cell cultures, with special reference to oxygen supply and microcarrier mixing. Chem Eng Technol 11:171–178

    Google Scholar 

  • Wang L, Hu H, Yang J, Wang F, Kaisermayer C, Zhou P (2012a) High yield of human monoclonal antibody produced by stably transfected Drosophila schneider 2 cells in perfusion culture using wave bioreactor. Mol Biotechnol 52:170–179

    CAS  PubMed  Google Scholar 

  • Wang Y, Han Z-B, Song Y-P, Han ZC (2012b) Safety of mesenchymal stem cells for clinical application. Stem Cells Int 2012:652034

    PubMed Central  PubMed  Google Scholar 

  • Weber W, Fussenegger M (2009) Insect cell-based recombinant protein production. In: Springer (ed) Cell and tissue reaction engineering. Springer, Berlin/Heidelberg, pp 263–277

    Google Scholar 

  • Weber A, Husemann U, Chaussin S, Adams T, de Wilde D, Gerighausen S, Greller G, Fenge C (2013) Development and qualification of a scalable, disposable bioreactor for GMP-compliant cell culture. Biopharm Int Suppl 11:6–17

    Google Scholar 

  • Wen Y, Zang R, Zhang X, Yang S-T (2012) A 24-microwell plate with improved mixing and scalable performance for high throughput cell cultures. Process Biochem 47:612–618

    CAS  Google Scholar 

  • Werner S, Eibl R, Lettenbauer C, Röll M, Eibl D, De Jesus M, Zhang X, Stettler M, Tissot S, Bürki C, Broccard G, Kühner M, Tanner R, Baldi L, Hackera D, Wurm FM (2010a) Innovative, non-stirred bioreactors in scales from milliliters up to 1000 liters for suspension cultures of cells using disposable bags and containers – a Swiss contribution. Chimia 64:819–823

    CAS  PubMed  Google Scholar 

  • Werner S, Kraume M, Eibl D (2010b) Bag mixing systems for single-use. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Hoboken, NJ, USA: John Wiley & Sons, pp 21–32

    Google Scholar 

  • Werner S, Olownia J, Egger D, Eibl D (2013) An approach for scale-up of geometrically dissimilar orbitally shaken single-use bioreactors. Chem Ing Tech 85:118–126

    CAS  Google Scholar 

  • Whitford WG (2010) Single-use systems as principal components in bioproduction. Bioproc Int 8:34–42

    Google Scholar 

  • Whitford WG, Cadwell JJS (2009) Interest in hollow-fiber perfusion bioreactors is growing. Bioproc Int 7:54–63

    CAS  Google Scholar 

  • Whitford WG, Fairbank A (2011) Considerations in scale-up of viral vaccine production. Bioproc Int 9:16–28

    CAS  Google Scholar 

  • Wood J, Mahajan E, Shiratori M (2013) Strategy for selecting disposable bags for cell culture media applications based on a root-cause investigation. Biotechnol Prog 29(6):1535–1549

    CAS  PubMed  Google Scholar 

  • Xing Z, Kenty BM, Li ZJ, Lee SS (2009) Scale-up analysis for a CHO cell culture process in large-scale bioreactors. Biotechnol Bioeng 103:733–746

    CAS  PubMed  Google Scholar 

  • Yang S-T, Liu X (2013) Cell culture processes for biologics manufacturing: recent developments and trends. Pharm Bioproc 1:133–136

    Google Scholar 

  • Yim SS, Shamlou PA (2000) The engineering effects of fluids flow on freely suspended biological macro-materials and macromolecules. Adv Biochem Eng Biotechnol 67:83–122

    CAS  PubMed  Google Scholar 

  • Zambeaux JP, Vanhamel S, Bosco F, Castillo J (2007) Disposable bioreactor. Patent EP1961606A2

    Google Scholar 

  • Zhang H, Williams-Dalson W, Keshavarz-Moore E, Shamlou PA (2005) Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks. Biotechnol Appl Biochem 41:1–8

    PubMed  Google Scholar 

  • Zhang H, Lamping SR, Pickering SCR, Lye GJ, Shamlou PA (2008a) Engineering characterisation of a single well from 24-well and 96-well microtitre plates. Biochem Eng J 40:138–149

    CAS  Google Scholar 

  • Zhang X, Stettler M, Reif O, Kocourek A, Dejesus M, Hacker DL, Wurm FM (2008b) Shaken helical track bioreactors: providing oxygen to high-density cultures of mammalian cells at volumes up to 1000 L by surface aeration with air. N Biotechnol 25:68–75

    PubMed  Google Scholar 

  • Zhang X, Bürki C-A, Stettler M, De Sanctisc D, Perronec M, Discacciati M, Parolini N, DeJesusb M, Hacker DL, Alfio Quarteronic FMW (2009) Efficient oxygen transfer by surface aeration in shaken cylindrical containers for mammalian cell cultivation at volumetric scales up to 1000 L. Biochem Eng J 45:41–47

    Google Scholar 

  • Zhang X, Stettler M, De Sanctis D, Perrone M, Parolini N, Discacciati M, De Jesus M, Hacker D, Quarteroni A, Wurm F (2010) Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale. Adv Biochem Eng Biotechnol 115:33–53

    Google Scholar 

  • Zhu H, Nienow AW, Bujalski W, Simmons MJH (2009) Mixing studies in a model aerated bioreactor equipped with an up- or a down-pumping “Elephant Ear” agitator: power, hold-up and aerated flow field measurements. Chem Eng Res Des 87:307–317

    CAS  Google Scholar 

  • Zijlstra GM, Hoff RP, Schilderer J (2012) Process for culturing of cells. US Patent US8222001 B2

    Google Scholar 

  • Zlokarnik M (1999) Rührtechnik – Theorie und Praxis. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Zouwenga R, D’Avino A, Zijlstra GM (2010) Improving productivity in bioreactors. Genet Eng Biotechnol News 30:1–4

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank M.Sc. Carmen Schirmaier and B.Sc. Valentin Jossen for the experimental work with the hADSCs in the Mobius® CellReady 3 L bioreactor and the MC suspension investigations. Gerhard Greller (Sartorius Stedim Biotech) and Mark Selker (Finesse Solutions, Inc.) we thank for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regine Eibl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaiser, S.C., Kraume, M., Eibl, D., Eibl, R. (2015). Single-Use Bioreactors for Animal and Human Cells. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_14

Download citation

Publish with us

Policies and ethics