Perfusion Processes

Chapter
Part of the Cell Engineering book series (CEEN, volume 9)

Abstract

The interest for perfusion is increasing nowadays. This new focus has emerged from a synergy of a demand for disposable equipment and the availability of robust cell separation device, as well as the need for higher flexibility and lower investment cost. The cell separation devices mostly used today are based on filtration, i.e. alternating flow filtration, tangential flow filtration, spin-filter, or acceleration/gravity, i.e. inclined settler, centrifuge, acoustic settler. This paper gives an introduction to the basic concepts of perfusion and its practical implementation. It reviews the actual cell separation devices and describes the approaches used in the field to develop and optimize the perfusion processes.

Keywords

Perfusion Continuous process Alternating flow filtration Tangential flow filtration Spin-filter Inclined settler Centrifuge centritech Acoustic settler Hydrocyclone Floating filter 

References

  1. Adams T, Noack U, Frick T, Greller G, Fenge C (2011) Increasing efficiency in protein and cell production by combining single-use bioreactor technology and perfusion. BioPharm Int Suppl 24(5):4–11Google Scholar
  2. Ahn WS, Jeon JJ, Jeong YR, Lee SJ, Yoon SK (2008) Effect of culture temperature on erythropoietin production and glycosylation in a perfusion culture of recombinant CHO cells. Biotechnol Bioeng 101(6):1234–1244. doi: 10.1002/bit.22006 PubMedGoogle Scholar
  3. Amos B, Al-Rubeai M, Emery AN (1994) Hybridoma growth and monoclonal antibody production in a dialysis perfusion system. Enzym Microb Technol 16(8):688–695Google Scholar
  4. Angepat S, Gorenflo VM, Piret JM (2005) Accelerating perfusion process optimization by scanning non-steady-state responses. Biotechnol Bioeng 92(4):472–478. doi: 10.1002/bit.20635 PubMedGoogle Scholar
  5. Apelman S (1992) Separation of animal cells in continuous cell culture systems. In: Murakami H, Shirahata S, Tachibana H (eds) Animal cell technology: basic & applied aspects. Kluwer, Dordrecht, pp 149–154Google Scholar
  6. Apelman S, Bjorling T (1991) New centrifugal separator. Biotech Forum Eur 8:356–358Google Scholar
  7. Avgerinos GC, Drapeau D, Socolow JS, Mao JI, Hsiao K, Broeze RJ (1990) Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells. Biotechnology (N Y) 8(1):54–58Google Scholar
  8. Batt BC, Davis RH, Kompala DS (1990) Inclined sedimentation for selective retention of viable hybridomas in a continuous suspension bioreactor. Biotechnol Prog 6(6):458–464. doi: 10.1021/bp00006a600 PubMedGoogle Scholar
  9. Bleckwenn NA, Golding H, Bentley WE, Shiloach J (2005) Production of recombinant proteins by vaccinia virus in a microcarrier based mammalian cell perfusion bioreactor. Biotechnol Bioeng 90(6):663–674. doi: 10.1002/bit.20423 PubMedGoogle Scholar
  10. Bollin F, Dechavanne V, Chevalet L (2011) Design of experiment in CHO and HEK transient transfection condition optimization. Protein Expr Purif 78(1):61–68. doi: 10.1016/j.pep.2011.02.008 PubMedGoogle Scholar
  11. Boycott AE (1920) Sedimentation of blood corpuscles. Nature 104:532–538Google Scholar
  12. Caron A, Tom R, Kamen A, Massie B (1994) Baculovirus expression system scaleup by perfusion of high-density Sf-9 cell cultures. Biotechnol Bioeng 43(9):881–891PubMedGoogle Scholar
  13. Carvell JP, Dowd JE (2006) On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology 50(1–3):35–48. doi: 10.1007/s10616-005-3974-x PubMedCentralPubMedGoogle Scholar
  14. Castilho LR, Medronho RA (2002) Cell retention devices for suspended-cell perfusion cultures. Adv Biochem Eng Biotechnol 74:129–169PubMedGoogle Scholar
  15. Chatzisavido N, Bjorling T, Fenge C, Boork S, Lindner-Olsson E, Apelman S (1993) A continuous cell centrifuge for lab scale perfusion processes of mammalian cells. In: Kobayashi T, Kitagawa Y, Okumura K (eds) Animal cell technology: basic and applied aspects. Kluwer, Dordrecht, pp 463–468Google Scholar
  16. Chen ZL, Wu BC, Liu H, Liu XM, Huang PT (2004) Temperature shift as a process optimization step for the production of pro-urokinase by a recombinant Chinese hamster ovary cell line in high-density perfusion culture. J Biosci Bioeng 97(4):239–243. doi: 10.1016/S1389-1723(04)70198-X PubMedGoogle Scholar
  17. Choo CY, Tian Y, Kim WS, Blatter E, Conary J, Brady CP (2007) High-level production of a monoclonal antibody in murine myeloma cells by perfusion culture using a gravity settler. Biotechnol Prog 23(1):225–231. doi: 10.1021/bp060231v PubMedGoogle Scholar
  18. Chotteau V, Björling T, Boork S, Brink-Nilsson H, Chatzissavidou N, Fenge C, Lindner-Olsson E, Olofsson M, Rosenquist J, Sandberg H, Smeds A-L, Drapeau D (2001) Development of a large scale process for the production of recombinant truncated factor VIII in CHO cells under cell growth arrest conditions. In: L-Oecnl E (ed) From target to market, Proceedings of the 17th ESACT meeting, Kluwer, Tylösand, 10–14 June 2001, pp 287–292Google Scholar
  19. Chotteau V, Bjorling T, Gretander A, Tuvesson O, Dudel U (2002) Evaluation of cell separation devices for the perfusion of animal cell culture in biopharmaceutical processes. In: Cell culture engineering VII, Snowmass Village, 1–6 Apr 2002Google Scholar
  20. Chotteau V, Clincke M-F, Zhang Y, Thoring L (2013) Achievement of extreme cell densities in different perfusion systems and impact of the cell density In: Integrated continuous biomanufacturing, ECI conference, Castelldefels, 20–24 Oct 2013Google Scholar
  21. Chotteau V, Zhang Y, Clincke MF (2014a) Very high cell density in perfusion of CHO cells by ATF, TFF, Wave bioreactor and/or CellTank technologies – impact of cell density and applications. In: Subramanian G (ed) Continuous processing in biopharmaceutical manufacturing. Wiley-VCH Weinheim (to appear)Google Scholar
  22. Chotteau V, Zhang Y, Thoring L (2014b) Extreme cell densities of CHO cells in perfused stirred tank bioreactor. In: Cell culture engineering XIV, Quebec City, 4–9 May 2014Google Scholar
  23. Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12(2):180–187PubMedGoogle Scholar
  24. Chuppa S, Tsai YS, Yoon S, Shackleford S, Rozales C, Bhat R, Tsay G, Matanguihan C, Konstantinov K, Naveh D (1997) Fermentor temperature as a tool for control of high-density perfusion cultures of mammalian cells. Biotechnol Bioeng 55(2):328–338. doi: 10.1002/(SICI)1097-0290(19970720)55:2<328::AID-BIT10>3.0.CO;2-D PubMedGoogle Scholar
  25. Clincke MF, Molleryd C, Zhang Y, Lindskog E, Walsh K, Chotteau V (2011) Study of a recombinant CHO cell line producing a monoclonal antibody by ATF or TFF external filter perfusion in a WAVE Bioreactor. BMC Proc 5(Suppl 8):P105. doi: 10.1186/1753-6561-5-S8-P105 PubMedCentralGoogle Scholar
  26. Clincke MF, Molleryd C, Samani PK, Lindskog E, Faldt E, Walsh K, Chotteau V (2013a) Very high density of Chinese hamster ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE Bioreactor-part II: applications for antibody production and cryopreservation. Biotechnol Prog 29(3):768–777. doi: 10.1002/btpr.1703 PubMedCentralPubMedGoogle Scholar
  27. Clincke MF, Molleryd C, Zhang Y, Lindskog E, Walsh K, Chotteau V (2013b) Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor. Part I. Effect of the cell density on the process. Biotechnol Prog 29(3):754–767. doi: 10.1002/btpr.1704 PubMedCentralPubMedGoogle Scholar
  28. Cortin V, Thibault J, Jacob D, Garnier A (2004) High-titer adenovirus vector production in 293S cell perfusion culture. Biotechnol Prog 20(3):858–863PubMedGoogle Scholar
  29. Dalm MC, Cuijten SM, van Grunsven WM, Tramper J, Martens DE (2004) Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor: part I. Cell density, viability, and cell-cycle distribution. Biotechnol Bioeng 88(5):547–557. doi: 10.1002/bit.20287 PubMedGoogle Scholar
  30. Dalm MC, Jansen M, Keijzer TM, van Grunsven WM, Oudshoorn A, Tramper J, Martens DE (2005) Stable hybridoma cultivation in a pilot-scale acoustic perfusion system: long-term process performance and effect of recirculation rate. Biotechnol Bioeng 91(7):894–900. doi: 10.1002/bit.20552 PubMedGoogle Scholar
  31. de la Broise D, Noiseux M, Lemieux R, Massie B (1991) Long-term perfusion culture of hybridoma: a “grow or die” cell cycle system. Biotechnol Bioeng 38:781–787PubMedGoogle Scholar
  32. Deo YM, Mahadevan MD, Fuchs R (1996) Practical considerations in operation and scale-up of spin-filter based bioreactors for monoclonal antibody production. Biotechnol Prog 12(1):57–64. doi: 10.1021/bp950079p PubMedGoogle Scholar
  33. Dowd JE, Kwok KE, Piret JM (2001) Glucose-based optimization of CHO-cell perfusion cultures. Biotechnol Bioeng 75(2):252–256PubMedGoogle Scholar
  34. Dowd JE, Jubb A, Kwok KE, Piret JM (2003) Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates. Cytotechnology 42(1):35–45. doi: 10.1023/A:1026192228471 PubMedCentralPubMedGoogle Scholar
  35. Ducommun P, Bolzonella I, Rhiel M, Pugeaud P, von Stockar U, Marison IW (2001) On-line determination of animal cell concentration. Biotechnol Bioeng 72(5):515–522PubMedGoogle Scholar
  36. Ducommun P, Kadouri A, von Stockar U, Marison IW (2002a) On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. Biotechnol Bioeng 77(3):316–323PubMedGoogle Scholar
  37. Ducommun P, Ruffieux P, Kadouri A, von Stockar U, Marison IW (2002b) Monitoring of temperature effects on animal cell metabolism in a packed bed process. Biotechnol Bioeng 77(7):838–842PubMedGoogle Scholar
  38. Elsayed EA, Wagner R (2011) Application of hydrocyclones for continuous cultivation of SP-2/0 cells in perfusion bioreactors: effect of hydrocyclone operating pressure. BMC Proc 5(Suppl 8):P65. doi: 10.1186/1753-6561-5-S8-P65 PubMedCentralGoogle Scholar
  39. Emery AN, Jan DC, Al-Rubeai M (1995) Oxygenation of intensive cell-culture system. Appl Microbiol Biotechnol 43(6):1028–1033PubMedGoogle Scholar
  40. Esclade LRJ, Carrel S, Peringer P (1991) Influence of the screen material on the fouling of spin filters. Biotechnol Bioeng 38(2):159–168PubMedGoogle Scholar
  41. Figueredo-Cardero A, Chico E, Castilho LR, Medronho RA (2009) CFD simulation of an internal spin-filter: evidence of lateral migration and exchange flow through the mesh. Cytotechnology 61(1–2):55–64. doi: 10.1007/s10616-009-9242-8 PubMedCentralPubMedGoogle Scholar
  42. Galvez J, Lecina M, Sola C, Cairo JJ, Godia F (2012) Optimization of HEK-293S cell cultures for the production of adenoviral vectors in bioreactors using on-line OUR measurements. J Biotechnol 157(1):214–222. doi: 10.1016/j.jbiotec.2011.11.007 PubMedGoogle Scholar
  43. Genzel Y, Vogel T, Buck J, Behrendt I, Ramirez DV, Schiedner G, Jordan I, Reichl U (2014) High cell density cultivations by alternating tangential flow (ATF) perfusion for influenza A virus production using suspension cells. Vaccine. doi: 10.1016/j.vaccine.2014.02.016 Google Scholar
  44. Goh JS, Liu Y, Liu H, Chan KF, Wan C, Teo G, Zhou X, Xie F, Zhang P, Zhang Y, Song Z (2014) Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function. Biotechnol J 9(1):100–109. doi: 10.1002/biot.201300301 PubMedGoogle Scholar
  45. Goldman MH, James DC, Rendall M, Ison AP, Hoare M, Bull AT (1998) Monitoring recombinant human interferon-gamma N-glycosylation during perfused fluidized-bed and stirred-tank batch culture of CHO cells. Biotechnol Bioeng 60(5):596–607PubMedGoogle Scholar
  46. Gorenflo VM, Smith L, Dedinsky B, Persson B, Piret JM (2002) Scale-up and optimization of an acoustic filter for 200 L/day perfusion of a CHO cell culture. Biotechnol Bioeng 80(4):438–444. doi: 10.1002/bit.10386 PubMedGoogle Scholar
  47. Gorenflo VM, Angepat S, Bowen BD, Piret JM (2003) Optimization of an acoustic cell filter with a novel air-backflush system. Biotechnol Prog 19(1):30–36. doi: 10.1021/bp025625a PubMedGoogle Scholar
  48. Gorenflo VM, Pfeifer TA, Lesnicki G, Kwan EM, Grigliatti TA, Kilburn DG, Piret JM (2004) Production of a self-activating CBM-factor X fusion protein in a stable transformed Sf9 insect cell line using high cell density perfusion culture. Cytotechnology 44(3):93–102. doi: 10.1007/s10616-005-0703-4 PubMedCentralPubMedGoogle Scholar
  49. Gorenflo VM, Chow VS, Chou C, Piret JM (2005a) Optical analysis of perfusion bioreactor cell concentration in an acoustic separator. Biotechnol Bioeng 92(4):514–518. doi: 10.1002/bit.20693 PubMedGoogle Scholar
  50. Gorenflo VM, Ritter JB, Aeschliman DS, Drouin H, Bowen BD, Piret JM (2005b) Characterization and optimization of acoustic filter performance by experimental design methodology. Biotechnol Bioeng 90(6):746–753. doi: 10.1002/bit.20476 PubMedGoogle Scholar
  51. Grandics P, Szathmary S, Szathmary Z, O’Neill T (1991) Integration of cell culture with continuous, on-line sterile downstream processing. Ann N Y Acad Sci 646:322–333PubMedGoogle Scholar
  52. Griffiths B (2001) Scale-up of suspension and anchorage-dependent animal cells. Mol Biotechnol 17(3):225–238. doi: 10.1385/MB:17:3:225 PubMedGoogle Scholar
  53. Griffiths JP, Pirt SJ (1967) The uptake of amino acids by mouse cells (strain LS) during growth in batch culture and chemostat culture: the influence of cell growth rate. Proc R Soc Lond Sers B Contain Pap Biol Character R Soc 168(1013):421–438Google Scholar
  54. Handa-Corrigan A, Nikolay S, Jeffery D, Heffernan B, Young A (1992) Controlling and predicting monoclonal antibody production in hollow-fiber bioreactors. Enzym Microb Technol 14(1):58–63Google Scholar
  55. Hecht V, Duvar S, Ziehr H, Burg J, Jockwer A (2014) Efficiency improvement of an antibody production process by increasing the inoculum density. Biotechnol Prog. doi: 10.1002/btpr.1887 PubMedGoogle Scholar
  56. Heidemann R, Zhang C, Qi H, Larrick Rule J, Rozales C, Park S, Chuppa S, Ray M, Michaels J, Konstantinov K, Naveh D (2000) The use of peptones as medium additives for the production of a recombinant therapeutic protein in high density perfusion cultures of mammalian cells. Cytotechnology 32(2):157–167. doi: 10.1023/A:1008196521213 PubMedCentralPubMedGoogle Scholar
  57. Henry O, Kwok E, Piret JM (2008) Simpler noninstrumented batch and semicontinuous cultures provide mammalian cell kinetic data comparable to continuous and perfusion cultures. Biotechnol Prog 24(4):921–931. doi: 10.1002/btpr.17 PubMedGoogle Scholar
  58. Hiller GW, Clark DS, Blanch HW (1993) Cell retention-chemostat studies of hybridoma cells-analysis of hybridoma growth and metabolism in continuous suspension culture in serum-free medium. Biotechnol Bioeng 42(2):185–195. doi: 10.1002/bit.260420206 PubMedGoogle Scholar
  59. Hiller GW, Clark DS, Blanch HW (1994) Transient responses of hybridoma cells in continuous culture to step changes in amino acid and vitamin concentrations. Biotechnol Bioeng 44(3):303–321. doi: 10.1002/bit.260440308 PubMedGoogle Scholar
  60. Himmelfarb P, Thayer PS, Martin HE (1969) Spin filter culture: the propagation of mammalian cells in suspension. Science 164(3879):555–557PubMedGoogle Scholar
  61. Jardin BA, Montes J, Lanthier S, Tran R, Elias C (2007) High cell density fed batch and perfusion processes for stable non-viral expression of secreted alkaline phosphatase (SEAP) using insect cells: comparison to a batch Sf-9-BEV system. Biotechnol Bioeng 97(2):332–345. doi: 10.1002/bit.21224 PubMedGoogle Scholar
  62. Jockwer A, Medronho RA, Wagner R, Anspach FB, Deckwer W-D (2001) The use of hydrocyclones for mammalian cell retention in perfusion bioreactors. In: Linder-Olsson E, Chatzissavidou N, Lüllau E (eds) Animal cell technology: from target to market. Kluwer, Dordrecht, pp 301–305Google Scholar
  63. Johnson M, Lanthier S, Massie B, Lefebvre G, Kamen AA (1996) Use of the Centritech Lab centrifuge for perfusion culture of hybridoma cells in protein-free medium. Biotechnol Prog 12(6):855–864. doi: 10.1021/bp960072n PubMedGoogle Scholar
  64. Kawahara H, Mitsuda S, Kumazawa E, Takeshita Y (1994) High-density culture of FM-3A cells using a bioreactor with an external tangential-flow filtration device. Cytotechnology 14(1):61–66PubMedGoogle Scholar
  65. Kim JS, Ahn BC, Lim BP, Choi YD, Jo EC (2004) High-level scu-PA production by butyrate-treated serum-free culture of recombinant CHO cell line. Biotechnol Prog 20(6):1788–1796. doi: 10.1021/bp025536y PubMedGoogle Scholar
  66. Kim BJ, Chang HN, Oh DJ (2007) Application of a cell-once-through perfusion strategy for production of recombinant antibody from rCHO cells in a Centritech Lab II centrifuge system. Biotechnol Prog 23(5):1186–1197. doi: 10.1021/bp0700861 PubMedGoogle Scholar
  67. Kim BJ, Oh DJ, Chang HN (2008) Limited use of Centritech Lab II centrifuge in perfusion culture of rCHO cells for the production of recombinant antibody. Biotechnol Prog 24(1):166–174. doi: 10.1021/bp070235f PubMedGoogle Scholar
  68. Kinosita K (1949) Sedimentation in tilted vessels. J Colloid Interface Sci 4:166–176Google Scholar
  69. Kompala DS, Ozturk SS (2005) Optimization of high cell density perfusion bioreactors. In: Ozturk SS, Hu W-S (eds) Cell culture technology for pharmaceutical and cell-based therapies. Taylor & Francis, Boca Raton, FLGoogle Scholar
  70. Konstantinov K, Goudar C, Ng M, Meneses R, Thrift J, Chuppa S, Matanguihan C, Michaels J, Naveh D (2006) The “push-to-low” approach for optimization of high-density perfusion cultures of animal cells. Adv Biochem Eng/Biotechnol 101:75–98Google Scholar
  71. Kuczewski M, Schirmer E, Lain B, Zarbis-Papastoitsis G (2011) A single-use purification process for the production of a monoclonal antibody produced in a PER.C6 human cell line. Biotechnol J 6(1):56–65. doi: 10.1002/biot.201000292 PubMedGoogle Scholar
  72. Kumar A, Bansal V, Nandakumar KS, Galaev IY, Roychoudhury PK, Holmdahl R, Mattiasson B (2006) Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices. Biotechnol Bioeng 93(4):636–646. doi: 10.1002/bit.20719 PubMedGoogle Scholar
  73. Kurosawa H, Markl H, Niebuhrredder C, Matsumura M (1991) Dialysis bioreactor with radial-flow fixed-bed for animal-cell culture. J Ferment Bioeng 72(1):41–45Google Scholar
  74. Kyung YS, Peshwa MV, Gryte DM, Hu WS (1994) High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements. Cytotechnology 14(3):183–190PubMedGoogle Scholar
  75. Lipscomb ML, Mowry MC, Kompala DS (2004) Production of a secreted glycoprotein from an inducible promoter system in a perfusion bioreactor. Biotechnol Prog 20(5):1402–1407. doi: 10.1021/bp049973j PubMedGoogle Scholar
  76. Maiorella B, Dorin G, Carion A, Harano D (1991) Crossflow microfiltration of animal cells. Biotechnol Bioeng 37(2):121–126. doi: 10.1002/bit.260370205 PubMedGoogle Scholar
  77. Mercille S, Johnson M, Lemieux R, Massie B (1994) Filtration-based perfusion of hybridoma cultures in protein-free medium: reduction of membrane fouling by medium supplementation with DNase I. Biotechnol Bioeng 43(9):833–846. doi: 10.1002/bit.260430902 PubMedGoogle Scholar
  78. Mercille S, Johnson M, Lanthier S, Kamen AA, Massie B (2000) Understanding factors that limit the productivity of suspension-based perfusion cultures operated at high medium renewal rates. Biotechnol Bioeng 67(4):435–450PubMedGoogle Scholar
  79. Meuwly F, von Stockar U, Kadouri A (2004) Optimization of the medium perfusion rate in a packed-bed bioreactor charged with CHO cells. Cytotechnology 46(1):37–47. doi: 10.1007/s10616-005-2105-z PubMedCentralPubMedGoogle Scholar
  80. Meuwly F, Papp F, Ruffieux PA, Bernard AR, Kadouri A, von Stockar U (2006) Use of glucose consumption rate (GCR) as a tool to monitor and control animal cell production processes in packed-bed bioreactors. J Biotechnol 122(1):122–129. doi: 10.1016/j.jbiotec.2005.08.005 PubMedGoogle Scholar
  81. Meuwly F, Ruffieux PA, Kadouri A, von Stockar U (2007) Packed-bed bioreactors for mammalian cell culture: bioprocess and biomedical applications. Biotechnol Adv 25(1):45–56. doi: 10.1016/j.biotechadv.2006.08.004 PubMedGoogle Scholar
  82. Miller WM, Blanch HW, Wilke CR (1988) A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: effect of nutrient concentration, dilution rate, and pH. Biotechnol Bioeng 32(8):947–965. doi: 10.1002/bit.260320803 PubMedGoogle Scholar
  83. Nivitchanyong T, Martinez A, Ishaque A, Murphy JE, Konstantinov K, Betenbaugh MJ, Thrift J (2007) Anti-apoptotic genes Aven and E1B-19 K enhance performance of BHK cells engineered to express recombinant factor VIII in batch and low perfusion cell culture. Biotechnol Bioeng 98(4):825–841. doi: 10.1002/bit.21479 PubMedGoogle Scholar
  84. Noll T, Biselli M (1998) Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. J Biotechnol 63(3):187–198PubMedGoogle Scholar
  85. Oh HK, So MK, Yang J, Yoon HC, Ahn JS, Lee JM, Kim JT, Yoo JU, Byun TH (2005) Effect of N-Acetylcystein on butyrate-treated Chinese hamster ovary cells to improve the production of recombinant human interferon-beta-1a. Biotechnol Prog 21(4):1154–1164. doi: 10.1021/bp050057v PubMedGoogle Scholar
  86. Ozturk SS (1996) Engineering challenges in high density cell culture systems. Cytotechnology 22(1–3):3–16. doi: 10.1007/BF00353919 PubMedGoogle Scholar
  87. Padawer I, Ling WL, Bai Y (2013) Case study: an accelerated 8-day monoclonal antibody production process based on high seeding densities. Biotechnol Prog 29(3):829–832. doi: 10.1002/btpr.1719 PubMedGoogle Scholar
  88. Pinto RC, Medronho RA, Castilho LR (2008) Separation of CHO cells using hydrocyclones. Cytotechnology 56(1):57–67. doi: 10.1007/s10616-007-9108-x PubMedCentralPubMedGoogle Scholar
  89. Pohlscheidt M, Jacobs M, Wolf S, Thiele J, Jockwer A, Gabelsberger J, Jenzsch M, Tebbe H, Burg J (2013) Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Biotechnol Prog 29(1):222–229. doi: 10.1002/btpr.1672 PubMedGoogle Scholar
  90. Rodrigues CA, Fernandes TG, Diogo MM, da Silva CL, Cabral JM (2011) Stem cell cultivation in bioreactors. Biotechnol Adv 29(6):815–829. doi: 10.1016/j.biotechadv.2011.06.009 PubMedGoogle Scholar
  91. Rodriguez J, Spearman M, Tharmalingam T, Sunley K, Lodewyks C, Huzel N, Butler M (2010) High productivity of human recombinant beta-interferon from a low-temperature perfusion culture. J Biotechnol 150(4):509–518. doi: 10.1016/j.jbiotec.2010.09.959 PubMedGoogle Scholar
  92. Runstadler PW (1992) The importance of cell physiology to the performance of animal cell bioreactors. Ann N Y Acad Sci 665:380–390PubMedGoogle Scholar
  93. Ryll T, Dutina G, Reyes A, Gunson J, Krummen L, Etcheverry T (2000) Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: characterization of separation efficiency and impact of perfusion on product quality. Biotechnol Bioeng 69(4):440–449PubMedGoogle Scholar
  94. Sandberg H, Lutkemeyer D, Kuprin S, Wrangel M, Almstedt A, Persson P, Ek V, Mikaelsson M (2006) Mapping and partial characterization of proteases expressed by a CHO production cell line. Biotechnol Bioeng 95(5):961–971. doi: 10.1002/bit.21057 PubMedGoogle Scholar
  95. Schmid G, Wilke CR, Blanch HW (1992) Continuous hybridoma suspension cultures with and without cell retention: kinetics of growth, metabolism and product formation. J Biotechnol 22(1–2):31–40PubMedGoogle Scholar
  96. Searles JA, Todd P, Kompala DS (1994) Viable cell recycle with an inclined settler in the perfusion culture of suspended recombinant Chinese hamster ovary cells. Biotechnol Prog 10(2):198–206. doi: 10.1021/bp00026a600 PubMedGoogle Scholar
  97. Serra M, Brito C, Correia C, Alves PM (2012) Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 30(6):350–359. doi: 10.1016/j.tibtech.2012.03.003 PubMedGoogle Scholar
  98. Seth G, Hamilton RW, Stapp TR, Zheng L, Meier A, Petty K, Leung S, Chary S (2013) Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns. Biotechnol Bioeng 110(5):1376–1385. doi: 10.1002/bit.24808 PubMedGoogle Scholar
  99. Shen Y, Yanagimachi K (2011) CFD-aided cell settler design optimization and scale-up: effect of geometric design and operational variables on separation performance. Biotechnol Prog 27(5):1282–1296. doi: 10.1002/btpr.636 PubMedGoogle Scholar
  100. Shevitz J (2000) Fluid filtration system. US Patent 6,544,424Google Scholar
  101. Shirgaonkar IZ, Lanthier S, Kamen A (2004) Acoustic cell filter: a proven cell retention technology for perfusion of animal cell cultures. Biotechnol Adv 22(6):433–444. doi: 10.1016/j.biotechadv.2004.03.003 PubMedGoogle Scholar
  102. Smith CG, Guillaume J-M, Greenfield PF, Randerson DH (1991) Experience in scale-up of homogeneous perfusion culture for hybridomas. Bioprocess Eng 6(5):213–219Google Scholar
  103. Tang YJ, Ohashi R, Hamel JF (2007) Perfusion culture of hybridoma cells for hyperproduction of IgG(2a) monoclonal antibody in a wave bioreactor-perfusion culture system. Biotechnol Prog 23(1):255–264. doi: 10.1021/bp060299a PubMedGoogle Scholar
  104. Tao Y, Shih J, Sinacore M, Ryll T, Yusuf-Makagiansar H (2011) Development and implementation of a perfusion-based high cell density cell banking process. Biotechnol Prog 27(3):824–829. doi: 10.1002/btpr.599 PubMedGoogle Scholar
  105. Tolbert WR, Feder J, Kimes RC (1981) Large-scale rotating filter perfusion system for high-density growth of mammalian suspension cultures. In Vitro 17(10):885–890PubMedGoogle Scholar
  106. Vallez-Chetreanu F, Fraisse Ferreira LG, Rabe R, von Stockar U, Marison IW (2007) An on-line method for the reduction of fouling of spin-filters for animal cell perfusion cultures. J Biotechnol 130(3):265–273. doi: 10.1016/j.jbiotec.2007.04.007 PubMedGoogle Scholar
  107. Velez D, Miller L, Macmillan JD (1989) Use of tangential flow filtration in perfusion propagation of hybridoma cells for production of monoclonal-antibodies. Biotechnol Bioeng 33(7):938–940PubMedGoogle Scholar
  108. Vernardis SI, Goudar CT, Klapa MI (2013) Metabolic profiling reveals that time related physiological changes in mammalian cell perfusion cultures are bioreactor scale independent. Metab Eng 19:1–9. doi: 10.1016/j.ymben.2013.04.005 PubMedGoogle Scholar
  109. Vogel JH, Nguyen H, Giovannini R, Ignowski J, Garger S, Salgotra A, Tom J (2012) A new large-scale manufacturing platform for complex biopharmaceuticals. Biotechnol Bioeng 109(12):3049–3058. doi: 10.1002/bit.24578 PubMedGoogle Scholar
  110. Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82(7):751–765. doi: 10.1002/bit.10629 PubMedGoogle Scholar
  111. Wang MD, Yang M, Huzel N, Butler M (2002) Erythropoietin production from CHO cells grown by continuous culture in a fluidized-bed bioreactor. Biotechnol Bioeng 77(2):194–203PubMedGoogle Scholar
  112. Warikoo V, Godawat R, Brower K, Jain S, Cummings D, Simons E, Johnson T, Walther J, Yu M, Wright B, McLarty J, Karey KP, Hwang C, Zhou W, Riske F, Konstantinov K (2012) Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 109(12):3018–3029. doi: 10.1002/bit.24584 PubMedGoogle Scholar
  113. Warnock JN, Al-Rubeai M (2006) Bioreactor systems for the production of biopharmaceuticals from animal cells. Biotechnol Appl Biochem 45(Pt 1):1–12. doi: 10.1042/BA20050233 PubMedGoogle Scholar
  114. Woodside SM, Bowen BD, Piret JM (1998) Mammalian cell retention devices for stirred perfusion bioreactors. Cytotechnology 28(1–3):163–175PubMedCentralPubMedGoogle Scholar
  115. Wu P, Ozturk SS, Blackie JD, Thrift JC, Figueroa C, Naveh D (1995) Evaluation and applications of optical cell density probes in mammalian cell bioreactors. Biotechnol Bioeng 45(6):495–502. doi: 10.1002/bit.260450606 PubMedGoogle Scholar
  116. Xu Z-J, Michaelides EE (2005) A numerical simulation of the Boycott effect. Chem Eng Commun 192:532–549Google Scholar
  117. Yabannavar VM, Singh V, Connelly NV (1992) Mammalian cell retention in a spinfilter perfusion bioreactor. Biotechnol Bioeng 40(8):925–933. doi: 10.1002/bit.260400809 PubMedGoogle Scholar
  118. Yang WC, Lu J, Kwiatkowski C, Yuan H, Kshirsagar R, Ryll T, Huang YM (2014) Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnol Prog. doi: 10.1002/btpr.1884 Google Scholar
  119. Yuk IH, Olsen MM, Geyer S, Forestell SP (2004) Perfusion cultures of human tumor cells: a scalable production platform for oncolytic adenoviral vectors. Biotechnol Bioeng 86(6):637–642. doi: 10.1002/bit.20158 PubMedGoogle Scholar
  120. Zhang S, Handa-Corrigan A, Spier RE (1993) A comparison of oxygenation methods fro high-density perfusion culture of animal cells. Biotechnol Bioeng 41(7):685–692. doi: 10.1002/bit.260410702 PubMedGoogle Scholar
  121. Zhang J, Collins A, Chen M, Knyazev I, Gentz R (1998) High-density perfusion culture of insect cells with a biosep ultrasonic filter. Biotechnol Bioeng 59(3):351–359PubMedGoogle Scholar
  122. Zhang Y, Stobbe P, Orrego CS, Chotteau V (2014a) Perfusion at very high cell density of CHO cells anchored in a non-woven matrix based bioreactor, manuscript in preparationGoogle Scholar
  123. Zhang Y, Thoring L, Chotteau V (2014b) A method to optimize the cell specific perfusion rate in perfusion process. In: Cell culture engineering XIV, Quebec City, 4–9 May 2014Google Scholar
  124. Zijlstra G, Hof R, Schilder J (2008) Improved process for the culturing of cells. The Netherlands Patent WO 2008/006494 A1, 17 Jan 2008Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Cell Technology group, Department of Industrial Biotechnology/Bioprocess Design, School of BiotechnologyKTH (Royal Institute of Technology)StockholmSweden

Personalised recommendations