Pervasive and Intelligent Decision Support in Intensive Medicine – The Complete Picture

  • Filipe Portela
  • Manuel Filipe Santos
  • José Machado
  • António Abelha
  • Álvaro Silva
  • Fernando Rua
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8649)


In the Intensive Care Units (ICU) it is notorious the high number of data sources available. This situation brings more complexity to the way of how a professional makes a decision based on information provided by those data sources. Normally, the decisions are based on empirical knowledge and common sense. Often, they don’t make use of the information provided by the ICU data sources, due to the difficulty in understanding them. To overcome these constraints an integrated and pervasive system called INTCare has been deployed. This paper is focused in presenting the system architecture and the knowledge obtained by each one of the decision modules: Patient Vital Signs, Critical Events, ICU Medical Scores and Ensemble Data Mining. This system is able to make hourly predictions in terms of organ failure and outcome. High values of sensitivity where reached, e.g. 97.95% for the cardiovascular system, 99.77% for the outcome. In addition, the system is prepared for tracking patients’ critical events and for evaluating medical scores automatically and in real-time.


Critical Event Technology Acceptance Model Therapeutic Intervention Scoring System Modify Early Warning Score Data Mining Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Silva, Á., Cortez, P., Santos, M.F., Gomes, L., Neves, J.: Rating organ failure via adverse events using data mining in the intensive care unit. Artificial Intelligence in Medicine 43, 179–193 (2008)CrossRefGoogle Scholar
  2. 2.
    Mador, R.L., Shaw, N.T.: The impact of a Critical Care Information System (CCIS) on time spent charting and in direct patient care by staff in the ICU: a review of the literature. International Journal of Medical Informatics 78, 435–445 (2009)CrossRefGoogle Scholar
  3. 3.
    Gago, P., Santos, M.F., Silva, Á., Cortez, P., Neves, J., Gomes, L.: INTCare: a knowledge discovery based intelligent decision support system for intensive care medicine. Journal of Decision Systems (2006)Google Scholar
  4. 4.
    Portela, F., Santos, M., Vilas-Boas, M., Rua, F., Silva, Á., Neves, J.: Real-time Intelligent decision support in intensive medicine. In: KMIS 2010-International Conference on Knowledge Management and Information Sharing, Valência, Espanha, p. 7 (2010)Google Scholar
  5. 5.
    Santos, M., Portela, F., Vilas-Boas, M., Machado, J., Abelha, A., Neves, J., Silva, Á., Rua, F., Salazar, M., Quintas, C., Cabral, A.: Intelligent Decision Support in Intensive Care Units Nursing Information Modelling (2009)Google Scholar
  6. 6.
    Wooldridge, M.: Intelligent agents. In: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, pp. 27–77. MIT Press (1999)Google Scholar
  7. 7.
    Portela, C.F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Enabling a Pervasive Approach for Intelligent Decision Support in Critical Health Care. In: Cruz-Cunha, M.M., Varajão, J., Powell, P., Martinho, R. (eds.) CENTERIS 2011, Part III. CCIS, vol. 221, pp. 233–243. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Kohn, L.T., Corrigan, J., Donaldson, M.S.: To Err Is Human: Building a Safer Health System. National Academy Press (2000)Google Scholar
  9. 9.
    Varshney, U.: Pervasive Healthcare Computing: EMR/EHR, Wireless and Health Monitoring. Springer-Verlag New York Inc. (2009)Google Scholar
  10. 10.
    Scicluna, P., Murray, A., Xiao, Y., Mackenzie, C.F.: Challenges to Real-Time Decision Support in Health Care. Agency for Healthcare Research and Quality (2008)Google Scholar
  11. 11.
    Kaur, M., Pawar, M., Kohli, J.K., Mishra, S.: Critical events in intensive care unit. Indian Journal of Critical Care Medicine: Peer-reviewed, Official Publication of Indian Society of Critical Care Medicine 12, 28 (2008)CrossRefGoogle Scholar
  12. 12.
    Brenck, F., Hartmann, B., Mogk, M., Junger, A.: Scoring systems for daily assessment in intensive care medicine. Overview, current possibilities and demands on new developments. Der Anaesthesist 57, 189 (2008)Google Scholar
  13. 13.
    Vincent, J.L., Bruzzi de Carvalho, F.: Severity of illness. Semin. Respir. Crit. Care Med. 31, 031–038 (2010)Google Scholar
  14. 14.
    Vincent, J.L., Moreno, R., Takala, J., Willatts, S., De Mendonca, A., Bruining, H., Reinhart, C.K., Suter, P.M., Thijs, L.G.: The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Medicine 22, 707–710 (1996)CrossRefGoogle Scholar
  15. 15.
    Jones, C.: Glasgow coma scale. AJN The American Journal of Nursing 79, 1551 (1979)Google Scholar
  16. 16.
    Reis Miranda, D., de Rijk, A., Schaufeli, W.: Simplified Therapeutic Intervention Scoring System: the TISS-28 items–results from a multicenter study. Critical Care Medicine 24, 64 (1996)CrossRefGoogle Scholar
  17. 17.
    Gardner-Thorpe, J., Love, N., Wrightson, J., Walsh, S., Keeling, N.: The value of Modified Early Warning Score (MEWS) in surgical in-patients: a prospective observational study. Annals of The Royal College of Surgeons of England 88, 571 (2006)CrossRefGoogle Scholar
  18. 18.
    Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. ACM Sigmod Record 34, 18–26 (2005)CrossRefGoogle Scholar
  19. 19.
    Kantardzic, M.: Data mining: concepts, models, methods, and algorithms. Wiley-IEEE Press (2011)Google Scholar
  20. 20.
    Lee, P.: Design Research: What Is It and Why Do It? In: Reboot (ed.) The Reboot, vol. 2013 (2012),
  21. 21.
    Lunenfeld, P., Laurel, B.: Design research: Methods and perspectives. MIT Press (2003)Google Scholar
  22. 22.
    Portela, F., Santos, M.F., Vilas-Boas, M.: A Pervasive Approach to a Real-Time Intelligent Decision Support System in Intensive Medicine. In: Fred, A., Dietz, J.L.G., Liu, K., Filipe, J. (eds.) IC3K 2010. CCIS, vol. 272, pp. 368–381. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Saha, D., Mukherjee, A.: Pervasive computing: a paradigm for the 21st century. IEEE Computer 36, 25–31 (2003)CrossRefGoogle Scholar
  24. 24.
    Chooprayoon, V., Fung, C.C.: TECTAM: An Approach to Study Technology Acceptance Model (TAM) in Gaining Knowledge on the Adoption and Use of E-Commerce/E-Business Technology among Small and Medium Enterprises in Thailand (2010)Google Scholar
  25. 25.
    Portela, F., Aguiar, J., Santos, M.F., Silva, Á., Rua, F.: Pervasive Intelligent Decision Support System — Technology Acceptance in Intensive Care Units. In: Rocha, Á., Correia, A.M., Wilson, T., Stroetmann, K.A. (eds.) Advances in Information Systems and Technologies. AISC, vol. 206, pp. 279–292. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Filipe Portela
    • 1
  • Manuel Filipe Santos
    • 1
  • José Machado
    • 2
  • António Abelha
    • 2
  • Álvaro Silva
    • 3
  • Fernando Rua
    • 3
  1. 1.Algoritmi CentreUniversity of MinhoPortugal
  2. 2.CCTCUniversity of MinhoPortugal
  3. 3.Serviço Cuidados Intensivos, Centro Hospitalar do PortoHospital Santo AntónioPortugal

Personalised recommendations