Advertisement

Dealing with Missing Values

  • Salvador García
  • Julián Luengo
  • Francisco Herrera
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 72)

Abstract

In this chapter the reader is introduced to the approaches used in the literature to tackle the presence of Missing Values (MVs). In real-life data, information is frequently lost in data mining, caused by the presence of missing values in attributes. Several schemes have been studied to overcome the drawbacks produced by missing values in data mining tasks; one of the most well known is based on preprocessing, formally known as imputation. After the introduction in Sect. 4.1, the chapter begins with the theoretical background which analyzes the underlying distribution of the missingness in Sect. 4.2. From this point on, the successive sections go from the simplest approaches in Sect. 4.3, to the most advanced proposals, focusing in the imputation of the MVs. The scope of such advanced methods includes the classic maximum likelihood procedures, like Expectation-Maximization or Multiple-Imputation (Sect. 4.4) and the latest Machine Learning based approaches which use algorithms for classification or regression in order to accomplish the imputation (Sect. 4.5). Finally a comparative experimental study will be carried out in Sect. 4.6.

Keywords

Multiple Imputation Imputation Method Principal Component Regression Input Attribute Data Augmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Acuna, E., Rodriguez, C.: Classification, Clustering and Data Mining Applications. Springer, Berlin (2004)Google Scholar
  2. 2.
    Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. Artif. Intell. Rev. 11, 11–73 (1997)CrossRefGoogle Scholar
  3. 3.
    Aydilek, I.B., Arslan, A.: A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm. Inf. Sci. 233, 25–35 (2013)CrossRefGoogle Scholar
  4. 4.
    Azim, S., Aggarwal, S.: Hybrid model for data imputation: using fuzzy c-means and multi layer perceptron. In: Advance Computing Conference (IACC), 2014 IEEE International, pp. 1281–1285 (2014)Google Scholar
  5. 5.
    Barnard, J., Meng, X.: Applications of multiple imputation in medical studies: from aids to nhanes. Stat. Methods Med. Res. 8(1), 17–36 (1999)CrossRefGoogle Scholar
  6. 6.
    Batista, G., Monard, M.: An analysis of four missing data treatment methods for supervised learning. Appl. Artif. Intell. 17(5), 519–533 (2003)CrossRefGoogle Scholar
  7. 7.
    Bezdek, J., Kuncheva, L.: Nearest prototype classifier designs: an experimental study. Int. J. Intell. Syst. 16(12), 1445–1473 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Systems 11, 321–355 (1988)MathSciNetGoogle Scholar
  9. 9.
    van Buuren, S., Groothuis-Oudshoorn, K.: MICE: multivariate imputation by chained equations in r. J. Stat. Softw. 45(3), 1–67 (2011)Google Scholar
  10. 10.
    le Cessie, S., van Houwelingen, J.: Ridge estimators in logistic regression. Appl. Stat. 41(1), 191–201 (1992)zbMATHCrossRefGoogle Scholar
  11. 11.
    Chai, L., Mohamad, M., Deris, S., Chong, C., Choon, Y., Ibrahim, Z., Omatu, S.: Inferring gene regulatory networks from gene expression data by a dynamic bayesian network-based model. In: Omatu, S., De Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence, Advances in Intelligent and Soft Computing, pp. 379–386. Springer, Berlin (2012)CrossRefGoogle Scholar
  12. 12.
    Ching, W.K., Li, L., Tsing, N.K., Tai, C.W., Ng, T.W., Wong, A.S., Cheng, K.W.: A weighted local least squares imputation method for missing value estimation in microarray gene expression data. Int. J. Data Min. Bioinform. 4(3), 331–347 (2010)CrossRefGoogle Scholar
  13. 13.
    Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theor. 14(3), 462–467 (1968)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3(4), 261–283 (1989)Google Scholar
  15. 15.
    Cohen, W., Singer, Y.: A simple and fast and effective rule learner. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence, pp. 335–342 (1999)Google Scholar
  16. 16.
    Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth International Conference on Machine Learning (ICML), pp. 115–123 (1995).Google Scholar
  17. 17.
    Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)zbMATHGoogle Scholar
  18. 18.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2 edn. Wiley, New York (1991)Google Scholar
  19. 19.
    Daniel, R.M., Kenward, M.G.: A method for increasing the robustness of multiple imputation. Comput. Stat. Data Anal. 56(6), 1624–1643 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39, 1–38 (1977)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Domingos, P., Pazzani, M.: On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning 29, 103–137 (1997)zbMATHCrossRefGoogle Scholar
  22. 22.
    Dorri, F., Azmi, P., Dorri, F.: Missing value imputation in dna microarrays based on conjugate gradient method. Comp. Bio. Med. 42(2), 222–227 (2012)CrossRefGoogle Scholar
  23. 23.
    Dunning, T., Freedman, D.: Modeling section effects, Sage, pp. 225–231 (2008)Google Scholar
  24. 24.
    Ennett, C.M., Frize, M., Walker, C.R.: Influence of missing values on artificial neural network performance. Stud. Health Technol. Inform. 84, 449–453 (2001)Google Scholar
  25. 25.
    Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training support vector machines. J. Machine Learning Res. 6, 1889–1918 (2005)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Farhangfar, A., Kurgan, L., Dy, J.: Impact of imputation of missing values on classification error for discrete data. Pattern Recognit. 41(12), 3692–3705 (2008). http://dx.doi.org/10.1016/j.patcog.2008.05.019
  27. 27.
    Farhangfar, A., Kurgan, L.A., Pedrycz, W.: A novel framework for imputation of missing values in databases. IEEE Trans. Syst. Man Cybern. Part A 37(5), 692–709 (2007)CrossRefGoogle Scholar
  28. 28.
    Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning. In: 13th International Joint Conference on Uncertainly in Artificial Intelligence(IJCAI93), pp. 1022–1029 (1993)Google Scholar
  29. 29.
    Feng, H., Guoshun, C., Cheng, Y., Yang, B., Chen, Y.: A SVM regression based approach to filling in missing values. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES (3), Lecture Notes in Computer Science, vol. 3683, pp. 581–587. Springer, Berlin (2005)Google Scholar
  30. 30.
    Feng, X., Wu, S., Liu, Y.: Imputing missing values for mixed numeric and categorical attributes based on incomplete data hierarchical clustering. In: Proceedings of the 5th International Conference on Knowledge Science, Engineering and Management, KSEM’11, pp. 414–424 (2011)Google Scholar
  31. 31.
    Figueroa García, J.C., Kalenatic, D., Lopez Bello, C.A.: Missing data imputation in multivariate data by evolutionary algorithms. Comput. Hum. Behav. 27(5), 1468–1474 (2011)CrossRefGoogle Scholar
  32. 32.
    de França, F.O., Coelho, G.P., Zuben, F.J.V.: Predicting missing values with biclustering: a coherence-based approach. Pattern Recognit. 46(5), 1255–1266 (2013)zbMATHCrossRefGoogle Scholar
  33. 33.
    Frank, E., Witten, I.: Generating accurate rule sets without global optimization. In: Proceedings of the 15th International Conference on Machine Learning, pp. 144–151 (1998)Google Scholar
  34. 34.
    Gheyas, I.A., Smith, L.S.: A neural network-based framework for the reconstruction of incomplete data sets. Neurocomputing 73(16–18), 3039–3065 (2010)CrossRefGoogle Scholar
  35. 35.
    Gibert, K.: Mixed intelligent-multivariate missing imputation. Int. J. Comput. Math. 91(1), 85–96 (2014)zbMATHCrossRefGoogle Scholar
  36. 36.
    Grzymala-Busse, J., Goodwin, L., Grzymala-Busse, W., Zheng, X.: Handling missing attribute values in preterm birth data sets. In: 10th International Conference of Rough Sets and Fuzzy Sets and Data Mining and Granular Computing(RSFDGrC05), pp. 342–351 (2005)Google Scholar
  37. 37.
    Grzymala-Busse, J.W., Hu, M.: A comparison of several approaches to missing attribute values in data mining. In: Ziarko, W., Yao, Y.Y. (eds.) Rough Sets and Current Trends in Computing, Lecture Notes in Computer Science, vol. 2005, pp. 378–385. Springer, Berlin (2000)Google Scholar
  38. 38.
    Howell, D.: The analysis of missing data. SAGE Publications Ltd, London (2007)Google Scholar
  39. 39.
    Hruschka Jr, E.R., Ebecken, N.F.F.: Missing values prediction with k2. Intell. Data Anal. 6(6), 557–566 (2002)zbMATHGoogle Scholar
  40. 40.
    Hulse, J.V., Khoshgoftaar, T.M.: Incomplete-case nearest neighbor imputation in software measurement data. Inf. Sci. 259, 596–610 (2014)CrossRefGoogle Scholar
  41. 41.
    Ingsrisawang, L., Potawee, D.: Multiple imputation for missing data in repeated measurements using MCMC and copulas, pp. 1606–1610 (2012)Google Scholar
  42. 42.
    Ishioka, T.: Imputation of missing values for unsupervised data using the proximity in random forests. In: eLmL 2013, The 5th International Conference on Mobile, Hybrid, and On-line Learning, pp. 30–36 (2013)Google Scholar
  43. 43.
    Jamshidian, M., Jalal, S., Jansen, C.: Missmech: an R package for testing homoscedasticity, multivariate normality, and missing completely at random (mcar). J. Stat. Softw. 56(6), 1–31 (2014)Google Scholar
  44. 44.
    Joenssen, D.W., Bankhofer, U.: Hot deck methods for imputing missing data: the effects of limiting donor usage. In: Proceedings of the 8th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM’12, pp. 63–75 (2012)Google Scholar
  45. 45.
    Juhola, M., Laurikkala, J.: Missing values: how many can they be to preserve classification reliability? Artif. Intell. Rev. 40(3), 231–245 (2013)CrossRefGoogle Scholar
  46. 46.
    Keerin, P., Kurutach, W., Boongoen, T.: Cluster-based knn missing value imputation for dna microarray data. In: Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on, pp. 445–450. IEEE (2012)Google Scholar
  47. 47.
    Keerin, P., Kurutach, W., Boongoen, T.: An improvement of missing value imputation in dna microarray data using cluster-based lls method. In: Communications and Information Technologies (ISCIT), 2013 13th International Symposium on, pp. 559–564 (2013)Google Scholar
  48. 48.
    Khan, S.S., Hoey, J., Lizotte, D.J.: Bayesian multiple imputation approaches for one-class classification. In: Kosseim, L., Inkpen, D. (eds.) Advances in Artificial Intelligence - 25th Canadian Conference on Artificial Intelligence, Canadian AI 2012, Toronto, ON, Canada, Proceedings, pp. 331–336. 28–30 May 2012Google Scholar
  49. 49.
    Kim, H., Golub, G.H., Park, H.: Missing value estimation for dna microarray gene expression data: local least squares imputation. Bioinform. 21(2), 187–198 (2005)CrossRefGoogle Scholar
  50. 50.
    Krzanowski, W.: Multiple discriminant analysis in the presence of mixed continuous and categorical data. Comput. Math. Appl. 12(2, Part A), 179–185 (1986)zbMATHCrossRefGoogle Scholar
  51. 51.
    Kwak, N., Choi, C.H.: Input feature selection by mutual information based on parzen window. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1667–1671 (2002)CrossRefGoogle Scholar
  52. 52.
    Kwak, N., Choi, C.H.: Input feature selection for classification problems. IEEE Trans. Neural Networks 13(1), 143–159 (2002)CrossRefGoogle Scholar
  53. 53.
    Li, D., Deogun, J., Spaulding, W., Shuart, B.: Towards missing data imputation: a study of fuzzy k-means clustering method. In: 4th International Conference of Rough Sets and Current Trends in Computing (RSCTC04), pp. 573–579 (2004)Google Scholar
  54. 54.
    Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 1st edn. Wiley Series in Probability and Statistics, New York (1987)zbMATHGoogle Scholar
  55. 55.
    Little, R.J.A., Schluchter, M.D.: Maximum likelihood estimation for mixed continuous and categorical data with missing values. Biometrika 72, 497–512 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    Lu, X., Si, J., Pan, L., Zhao, Y.: Imputation of missing data using ensemble algorithms. In: Fuzzy Systems and Knowledge Discovery (FSKD), 2011 8th International Conference on, vol. 2, pp. 1312–1315 (2011)Google Scholar
  57. 57.
    McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York(2004)Google Scholar
  58. 58.
    Merlin, P., Sorjamaa, A., Maillet, B., Lendasse, A.: X-SOM and L-SOM: a double classification approach for missing value imputation. Neurocomputing 73(7–9), 1103–1108 (2010)CrossRefGoogle Scholar
  59. 59.
    Michalksi, R., Mozetic, I., Lavrac, N.: The multipurpose incremental learning system AQ15 and its testing application to three medical domains. In: 5th INational Conference on Artificial Intelligence (AAAI86), pp. 1041–1045 (1986)Google Scholar
  60. 60.
    Miyakoshi, Y., Kato, S.: Missing value imputation method by using Bayesian network with weighted learning. IEEJ Trans. Electron. Inf. Syst. 132, 299–305 (2012)Google Scholar
  61. 61.
    Moller, F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6, 525–533 (1990)CrossRefGoogle Scholar
  62. 62.
    Oba, S., aki Sato, M., Takemasa, I., Monden, M., ichi Matsubara, K., Ishii, S.: A bayesian missing value estimation method for gene expression profile data. Bioinform. 19(16), 2088–2096 (2003)CrossRefGoogle Scholar
  63. 63.
    Ouyang, M., Welsh, W.J., Georgopoulos, P.: Gaussian mixture clustering and imputation of microarray data. Bioinform. 20(6), 917–923 (2004)CrossRefGoogle Scholar
  64. 64.
    Panigrahi, L., Ranjan, R., Das, K., Mishra, D.: Removal and interpolation of missing values using wavelet neural network for heterogeneous data sets. In: Proceedings of the International Conference on Advances in Computing, Communications and Informatics, ICACCI ’12, pp. 1004–1009 (2012)Google Scholar
  65. 65.
    Patil, B., Joshi, R., Toshniwal, D.: Missing value imputation based on k-mean clustering with weighted distance. In: Ranka, S., Banerjee, A., Biswas, K., Dua, S., Mishra, P., Moona, R., Poon, S.H., Wang, C.L. (eds.) Contemporary Computing, Communications in Computer and Information Science, vol. 94, pp. 600–609. Springer, Berlin (2010)Google Scholar
  66. 66.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), pp. 1226–1238 (2005)Google Scholar
  67. 67.
    Pham, D.T., Afify, A.A.: Rules-6: a simple rule induction algorithm for supporting decision making. In: Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE, pp. 2184–2189 (2005)Google Scholar
  68. 68.
    Pham, D.T., Afify, A.A.: SRI: a scalable rule induction algorithm. Proc. Inst. Mech. Eng. [C]: J. Mech. Eng. Sci. 220, 537–552 (2006)CrossRefGoogle Scholar
  69. 69.
    Plat, J.: A resource allocating network for function interpolation. Neural Comput. 3(2), 213–225 (1991)CrossRefGoogle Scholar
  70. 70.
    Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods: Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)Google Scholar
  71. 71.
    Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  72. 72.
    Qin, Y., Zhang, S., Zhang, C.: Combining knn imputation and bootstrap calibrated empirical likelihood for incomplete data analysis. Int. J. Data Warehouse. Min. 6(4), 61–73 (2010)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1993)Google Scholar
  74. 74.
    Rahman, G., Islam, Z.: A decision tree-based missing value imputation technique for data pre-processing. In: Proceedings of the 9th Australasian Data Mining Conference - Volume 121, AusDM ’11, pp. 41–50 (2011)Google Scholar
  75. 75.
    Rahman, M., Islam, M.: KDMI: a novel method for missing values imputation using two levels of horizontal partitioning in a data set. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) Advanced Data Mining and Applications. Lecture Notes in Computer Science, vol. 8347, pp. 250–263. Springer, Berlin (2013)CrossRefGoogle Scholar
  76. 76.
    Rahman, M.G., Islam, M.Z.: Missing value imputation using decision trees and decision forests by splitting and merging records: two novel techniques. Know.-Based Syst. 53, 51–65 (2013)CrossRefGoogle Scholar
  77. 77.
    Rahman, M.G., Islam, M.Z.: Fimus: a framework for imputing missing values using co-appearance, correlation and similarity analysis. Know.-Based Syst. 56, 311–327 (2014)CrossRefGoogle Scholar
  78. 78.
    Royston, P., White, I.R.: Multiple imputation by chained equations (MICE): implementation in STATA. J. Stat. Softw. 45(4), 1–20 (2011)MathSciNetGoogle Scholar
  79. 79.
    Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581–592 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  80. 80.
    Rubin, D.B.: Multiple Imputation for Nonresponse in Surveys. Wiley, New York (1987)Google Scholar
  81. 81.
    Safarinejadian, B., Menhaj, M., Karrari, M.: A distributed EM algorithm to estimate the parameters of a finite mixture of components. Knowl. Inf. Syst. 23(3), 267–292 (2010)CrossRefGoogle Scholar
  82. 82.
    Schafer, J.L.: Analysis of Incomplete Multivariate Data. Chapman & Hall, London (1997)zbMATHCrossRefGoogle Scholar
  83. 83.
    Schafer, J.L., Olsen, M.K.: Multiple imputation for multivariate missing-data problems: a data analyst’s perspective. Multivar. Behav. Res. 33(4), 545–571 (1998)CrossRefGoogle Scholar
  84. 84.
    Scheuren, F.: Multiple imputation: how it began and continues. Am. Stat. 59, 315–319 (2005)MathSciNetCrossRefGoogle Scholar
  85. 85.
    Schneider, T.: Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Clim. 14, 853–871 (2001)CrossRefGoogle Scholar
  86. 86.
    Schomaker, M., Heumann, C.: Model selection and model averaging after multiple imputation. Comput. Stat. Data Anal. 71, 758–770 (2014)MathSciNetCrossRefGoogle Scholar
  87. 87.
    Sehgal, M.S.B., Gondal, I., Dooley, L.: Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data. Bioinform. 21(10), 2417–2423 (2005)CrossRefGoogle Scholar
  88. 88.
    Silva-Ramírez, E.L., Pino-Mejías, R., López-Coello, M., Cubiles-de-la Vega, M.D.: Missing value imputation on missing completely at random data using multilayer perceptrons. Neural Networks 24(1), 121–129 (2011)CrossRefGoogle Scholar
  89. 89.
    Simński, K.: Rough fuzzy subspace clustering for data with missing values. Comput. Inform. 33(1), 131–153 (2014)Google Scholar
  90. 90.
    Somasundaram, R., Nedunchezhian, R.: Radial basis function network dependent exclusive mutual interpolation for missing value imputation. J. Comput. Sci. 9(3), 327–334 (2013)CrossRefGoogle Scholar
  91. 91.
    Tanner, M.A., Wong, W.: The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82, 528–540 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  92. 92.
    Ting, J., Yu, B., Yu, D., Ma, S.: Missing data analyses: a hybrid multiple imputation algorithm using gray system theory and entropy based on clustering. Appl. Intell. 40(2), 376–388 (2014)CrossRefGoogle Scholar
  93. 93.
    Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for dna microarrays. Bioinform. 17(6), 520–525 (2001)CrossRefGoogle Scholar
  94. 94.
    Unnebrink, K., Windeler, J.: Intention-to-treat: methods for dealing with missing values in clinical trials of progressively deteriorating diseases. Stat. Med. 20(24), 3931–3946 (2001)CrossRefGoogle Scholar
  95. 95.
    Vellido, A.: Missing data imputation through GTM as a mixture of t-distributions. Neural Networks 19(10), 1624–1635 (2006)zbMATHCrossRefGoogle Scholar
  96. 96.
    Wang, H., Wang, S.: Mining incomplete survey data through classification. Knowl. Inf. Syst. 24(2), 221–233 (2010)Google Scholar
  97. 97.
    Williams, D., Liao, X., Xue, Y., Carin, L., Krishnapuram, B.: On classification with incomplete data. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 427–436 (2007)Google Scholar
  98. 98.
    Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 2(3), 408–421 (1972)zbMATHCrossRefGoogle Scholar
  99. 99.
    Wong, A.K.C., Chiu, D.K.Y.: Synthesizing statistical knowledge from incomplete mixed-mode data. IEEE Trans. Pattern Anal. Mach. Intell. 9(6), 796–805 (1987)CrossRefGoogle Scholar
  100. 100.
    Wu, X., Urpani, D.: Induction by attribute elimination. IEEE Trans. Knowl. Data Eng. 11(5), 805–812 (1999)CrossRefGoogle Scholar
  101. 101.
    Zhang, S.: Nearest neighbor selection for iteratively knn imputation. J. Syst. Softw. 85(11), 2541–2552 (2012)CrossRefGoogle Scholar
  102. 102.
    Zhang, S., Wu, X., Zhu, M.: Efficient missing data imputation for supervised learning. In: Cognitive Informatics (ICCI), 2010 9th IEEE International Conference on, pp. 672–679 (2010)Google Scholar
  103. 103.
    Zheng, Z., Webb, G.I.: Lazy learning of bayesian rules. Machine Learning 41(1), 53–84 (2000)MathSciNetCrossRefGoogle Scholar
  104. 104.
    Zhu, B., He, C., Liatsis, P.: A robust missing value imputation method for noisy data. Appl. Intell. 36(1), 61–74 (2012)CrossRefGoogle Scholar
  105. 105.
    Zhu, X., Zhang, S., Jin, Z., Zhang, Z., Xu, Z.: Missing value estimation for mixed-attribute data sets. IEEE Transactions on Knowl. Data Eng. 23(1), 110–121 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Salvador García
    • 1
  • Julián Luengo
    • 2
  • Francisco Herrera
    • 3
  1. 1.Department of Computer ScienceUniversity of JaénJaénSpain
  2. 2.Department of Civil EngineeringUniversity of BurgosBurgosSpain
  3. 3.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations