Advertisement

Software and Online Resources: Perspectives and Potential Applications

  • Karina Martinez-MayorgaEmail author
  • Terry L. Peppard
  • José L. Medina-Franco
Chapter

Abstract

Chemical databases arose as a tool for the storage of chemical structures and related information. Governmental agencies and others’ initiatives from around the world have compiled chemical databases to serve specific purposes. After compilation, curation, implementation, and launch, the databases are maintained through continuous updates and corrections. Comparative analysis among databases allows for the detection of complementarity, redundancy, or uniqueness. In addition, it provides information about missing areas in property and/or chemical space. This is routinely performed in the drug discovery field, typically based on chemical structures. The translation of these analyses to other areas, such as flavor materials, is emerging. Discussed below are a number of currently available databases of use to those working in the food/flavor area. Representative software and online resources available for the chemoinformatic analysis of such databases is presented in the second section of this chapter. The last section presents the author’s perspectives of the field and potential applications with the intent of motivating the use of chemoinformatic tools to the food chemistry field.

Keywords

Online Service Chemical Information Linalyl Acetate Chemical Abstract Service Aroma Extraction Dilution Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

K.M-M. thanks the Institute of Chemistry-UNAM and DGAPA-UNAM for funding (PAPIIT IA200513-2). The authors also wish to thank Robertet Flavors for permission to publish this chapter.

References

  1. ­1.
    Martinez-Mayorga K, Medina-Franco JL (2009) Chemoinformatics—applications in food chemistry, vol. 58. Elsevier, BurlingtonGoogle Scholar
  2. 2.
    Martínez-Mayorga K, Peppard TL, Yongye AB, Santos R, Giulianotti M, Medina-Franco JL (2011) Characterization of a comprehensive flavor database. J Chemometr 25:550–560CrossRefGoogle Scholar
  3. 3.
    Sprous DG, Salemme FR (2007) A comparison of the chemical properties of drugs and FEMA/FDA notified GRAS chemical compounds used in the food industry. Food Chem Toxicol 45:1419–1427CrossRefGoogle Scholar
  4. 4.
    Medina-Franco JL, Martínez-Mayorga K, Peppard TL, Del Rio A (2012) Chemoinformatic analysis of GRAS (Generally Recognized as Safe) flavor chemicals and natural products. PLoS ONE 7:e50798CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Hallagan JB, Hall RL (1995) FEMA GRAS—a GRAS assessment program for flavor ingredients. Regul Toxicol Pharm 21:422CrossRefGoogle Scholar
  7. 7.
    Hallagan JB, Hall RL (2009) Under the conditions of intended use—new developments in the FEMA GRAS program and the safety assesment of flavor ingredients. Food Chem Toxicol 47:267–278CrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
    Leffingwell J, Leffingwell D (2014) Perfumer Flavorist 39:26–37Google Scholar
  17. 17.
  18. 18.
  19. 19.
  20. 20.
  21. 21.
  22. 22.
    Arnam H, Acreeb TE (1998) Flavornet: a database of aroma compounds based on odor potency in natural products. Dev Food Sci 40:27CrossRefGoogle Scholar
  23. 23.
  24. 24.
    López-Vallejo F, Peppard TL, Medina-Franco JL, Martínez-Mayorga K (2011) Computational methods for the discovery of mood disorder therapies. Expert Opin Drug Discov 6:1227–1245CrossRefGoogle Scholar
  25. 25.
    Dunkel M, Schmidt U, Struck S, Berger L, Gruening B, Hossbach J, Jaeger IS, Effmert U, Piechulla B, Eriksson R, Knudsen J, Preissner R (2008) SuperScent–a database of flavors and scents. Nucleic Acids Res 37:D291–D294CrossRefGoogle Scholar
  26. 26.
  27. 27.
  28. 28.
    Wiener A, Shudler M, Levit A, Niv MY (2011) BitterDB: a database of bitter compounds. Nucleic Acids Res 40:D413–D419CrossRefGoogle Scholar
  29. 29.
  30. 30.
  31. 31.
  32. 32.
  33. 33.
    Irwin JJ, Shoichet BK, Mysinger MM, Huang N, Colizzi F, Wassam P, Cao Y (2009) Automated docking screens: a feasibility study. J Med Chem 52:5712–5720CrossRefGoogle Scholar
  34. 34.
    Consortium TU (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 32:W321–W326Google Scholar
  35. 35.
    Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32:W321–W326CrossRefGoogle Scholar
  36. 36.
  37. 37.
  38. 38.
  39. 39.
  40. 40.
  41. 41.
  42. 42.
  43. 43.
    Ahn Y-Y, Ahnert SE, Bagrow JP, Barabási A-L (2011) Flavor network and the principles of food pairing. Sci Rep 1:196CrossRefGoogle Scholar
  44. 44.
    Koenderink NJJP, Hulzebos JL, Roller S, Egan B, Top JL Antimicrobials on-line: concept and application for multidisciplinary knowledge exchange in the food domain. http://www.koenderink.info/nicole/pdf/Koenderink2003AFOT.pdfGoogle Scholar
  45. 45.
    Top JL, Rijgersberg H (2003) Modelling for decision support in the vegetable and fruit supply chain. Acta Hort 604:189–197Google Scholar
  46. 46.
  47. 47.
  48. 48.
  49. 49.
    Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA (2013) Shifting the single-target to the multi-target paradigm in drug discovery. Drug Discov Today 18:495–501Google Scholar
  50. 50.
  51. 51.
  52. 52.
  53. 53.
  54. 54.
  55. 55.
  56. 56.
  57. 57.
  58. 58.
  59. 59.
  60. 60.
  61. 61.
  62. 62.
  63. 63.
  64. 64.
  65. 65.
  66. 66.
  67. 67.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Karina Martinez-Mayorga
    • 1
    • 2
    Email author
  • Terry L. Peppard
    • 3
  • José L. Medina-Franco
    • 1
    • 2
  1. 1.Departamento de FisicoquímicaInstituto de Química, Universidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Torrey Pines Institute for Molecular StudiesPort St. LucieUSA
  3. 3.Robertet Flavors Inc.PiscatawayUSA

Personalised recommendations