Advertisement

Towards Leveraging Behavioral Economics in Mobile Application Design

  • Tobias Stockinger
  • Marion Koelle
  • Patrick Lindemann
  • Matthias Kranz
  • Stefan Diewald
  • Andreas Möller
  • Luis Roalter
Chapter

Abstract

People do not always think and behave rationally. Behavioral economics has produced theories to explain when and why people make such allegedly irrational decisions, for example if it comes to spending money. However, humans tend to use reference points to judge and decide. Nowadays, mobile devices can work as flexible tools to create reference points thus supporting decisions without being explicit about it. We discuss if and how mobile apps can influence decision making. As a consequence, apps can be built to better fit into the decision making progress. We argue that applying concepts from behavioral economics can increase user experience in a subtle manner.

Keywords

Behavioral economics Irrationality Gamification Persuasive technology Mental accounting Loss aversion 

References

  1. Ariely, D. (2009), Predictably irrational: The hidden forces that shape our decisions. New York, NY, USA: HarperCollins.Google Scholar
  2. Ariely, D., Huber, J., & Wertenbroch, K. (2005). When do losses loom larger than gains? Journal of Marketing Research, 42(2), 134–138.CrossRefGoogle Scholar
  3. Ariely, D., Loewenstein, G., & Prelec, D. (2003). Coherent arbitrariness: Stable demand curves without stable preferences. The Quarterly Journal of Economics, 118(1), 73–106.CrossRefGoogle Scholar
  4. Bao, X., Gowda, M., Mahajan, R., & Choudhury, R. R. (2013). The case for psychological computing. In Proceedings of the 14th Workshop on Mobile Computing Systems and Applications (HotMobile ’13) (pp. 6:1–6:6). New York, NY, USA: ACM.Google Scholar
  5. Birnbaum, M. H. (1999). How to show that 9 ¿ 221: Collect judgments in a between-subjects design. Psychological Methods, 4(3), 243.CrossRefGoogle Scholar
  6. Consolvo, S., Everitt, K., Smith, I., & Landay, J. A. (2006). Design requirements for technologies that encourage physical activity. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’06) (pp. 457–466). New York, NY, USA: ACM.Google Scholar
  7. Consolvo, S., McDonald, D. W., & Landay, J. A. (2009). Theory-driven design strategies for technologies that support behavior change in everyday life. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’09) (pp. 405–414). New York, NY, USA: ACM.Google Scholar
  8. Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness: Defining gamification. In Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments (pp. 9–15). New York: ACM.Google Scholar
  9. Diewald, S., Möller, A., Roalter, L., & Kranz, M. (2012). Gamification-supported exploration of natural user interfaces. In Adjunct Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ’12) (pp. 47–48).Google Scholar
  10. Field, A. P., & Hole, G. (2003). How to design and report experiments. London, England: Sage Publications.Google Scholar
  11. Fitz-Walter, Z., Tjondronegoro, D., & Wyeth, P. (2011). Orientation passport: Using gamification to engage university students. In Proceedings of the 23rd Australian Computer-Human Interaction Conference (OzCHI ’11) (pp. 122–125). New York, NY, USA: ACM.Google Scholar
  12. Fogg, B. J. (2002). Persuasive technology: Using computers to change what we think and do. San Francisco, CA, USA: Science & Technology Books.Google Scholar
  13. Froehlich, J., Dillahunt, T., Klasnja, P., Mankoff, J., Consolvo, S., Harrison, B., et al. (2009). UbiGreen: Investigating a mobile tool for tracking and supporting green transportation habits. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’09) (pp. 1043–1052). New York, NY, USA: ACM.Google Scholar
  14. Froehlich, J., Findlater, L., & Landay, J. (2010). The design of eco-feedback technology. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’10) (pp. 1999–2008). New York, NY, USA: ACM.Google Scholar
  15. Gächter, S., Orzen, H., Renner, E., & Starmer, C. (2009). Are experimental economists prone to framing effects? A natural field experiment. Journal of Economic Behavior & Organization, 70(3), 443–446.CrossRefGoogle Scholar
  16. Hamari, J. (2011). Perspectives from behavioral economics to analyzing game design patterns: Loss aversion in social games. In CHI ’11 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’11) (pp. 1–6). New York, NY, USA: ACM.Google Scholar
  17. Haselton, M., Nettle, D., & Andrews, P. (2005). The evolution of cognitive bias. In D. Buss (Ed.), The handbook of evolutionary psychology (pp. 724–746). Hoboken, NJ, USA: Wiley.Google Scholar
  18. Hurter, C., Girouard, A., Riche, N., & Plaisant, C. (2011). Active progress bars: Facilitating the switch to temporary activities. In Extended Abstracts on Human Factors in Computing Systems (CHI EA ’11) (pp. 1963–1968). New York, NY, USA: ACM.Google Scholar
  19. Kahneman, D. (2011). Thinking, fast and slow. London, England: Allen Lane.Google Scholar
  20. Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991). Anomalies: The endowment effect, loss aversion, and status quo bias. The Journal of Economic Perspectives, 5(1), 193–206.CrossRefGoogle Scholar
  21. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 47(2), 263–291.CrossRefGoogle Scholar
  22. Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. In N. J. Smelser & D. R. Gerstein (eds.), Behavioral and social science: Fifty years of discovery (Vol. 39(1), pp. 153–172). Washington, DC: National Academy Press.Google Scholar
  23. Kranz, M., Murmann, L., & Michahelles, F. (2013). Research in the large: Challenges for large-scale mobile application research – A case study about NFC adoption using gamification via an App store. International Journal of Mobile Human Computer Interaction (IJMHCI), 5(1), 45–61.CrossRefGoogle Scholar
  24. Lee, M. K., Kiesler, S., & Forlizzi, J. (2011). Mining behavioral economics to design persuasive technology for healthy choices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11) (pp. 325–334). New York, NY, USA: ACM.Google Scholar
  25. Marczewski, A. (2012). Gamification: A simple introduction and a bit more. E-Book, ISBN: 978-1-4717-9866-5Google Scholar
  26. Mattes, S., Hallén, A. (2009). Surrogate distraction measurement techniques: The lane change test. In Driver distraction: Theory, effects, and mitigation (pp. 107–121). Atlanta, GA, USA: CRC Press.Google Scholar
  27. Maurer, M.-E., De Luca, A., & Stockinger, T. (2011). Shining chrome: Using web browser personas to enhance SSL certificate visualization. In Human-Computer Interaction (INTERACT ’11). Lecture Notes in Computer Science (Vol. 6949, pp. 44–51). Berlin: Springer.Google Scholar
  28. Meschtscherjakov, A., Wilfinger, D., Scherndl, T., & Tscheligi, M. (2009). Acceptance of future persuasive in-car interfaces towards a more economic driving behaviour. In Proceedings of the 1st International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ’09) (pp. 81–88). New York, NY, USA: ACM.Google Scholar
  29. Möller, A., Kranz, M., Schmid, B., Roalter, L., & Diewald, S. (2013). Investigating self-reporting behavior in long-term studies. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13) (pp. 2931–2940). New York, NY, USA: ACM.Google Scholar
  30. Moraveji, N., Akasaka, R., Pea, R., & Fogg, B. (2011). The role of commitment devices and self-shaping in persuasive technology. In Extended Abstracts on Human Factors in Computing Systems (CHI EA ’11) (pp. 1591–1596). New York, NY, USA: ACM.Google Scholar
  31. Muran, E. M., & Motta, R. W. (1993). Cognitive distortions and irrational beliefs in post-traumatic stress, anxiety, and depressive disorders. Journal of Clinical Psychology 49(2), 166–176.CrossRefGoogle Scholar
  32. Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’90) (pp. 249–256). New York: ACM.Google Scholar
  33. Norman, D. A. (2007). Emotional design: Why we love (or hate) everyday things. New York, NY, USA: Basic Books.Google Scholar
  34. Norton, M. I., Mochon, D., & Ariely, D. (2012). The IKEA effect: When labor leads to love. Journal of Consumer Psychology, 22(3), 453–460.CrossRefGoogle Scholar
  35. O’Donoghue, T., & Rabin, M. (1999). Doing it now or later. The American Economic Review, 89(1), 103–124.CrossRefGoogle Scholar
  36. Pronin, E., & Kugler, M. B. (2007). Valuing thoughts, ignoring behavior: The introspection illusion as a source of the bias blind spot. Journal of Experimental Social Psychology, 43(4), 565–578.CrossRefGoogle Scholar
  37. Ross, L. (1977). The intuitive psychologist and his shortcomings: distortions in the attribution process. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 10, pp. 173–220). Amsterdam: Elsevier Science.Google Scholar
  38. Saini, R., & Monga, A. (2008). How I decide depends on what i spend: Use of heuristics is greater for time than for money. Journal of Consumer Research, 34(6), 914–922.CrossRefGoogle Scholar
  39. Shafir, E., & Thaler, R. H. (2006). Invest now, drink later, spend never: On the mental accounting of delayed consumption. Journal of Economic Psychology, 27(5), 694–712.CrossRefGoogle Scholar
  40. Simonson, I. (1990). The effect of purchase quantity and timing on variety-seeking behavior. Journal of Marketing Research, 27(2), 150–162.CrossRefGoogle Scholar
  41. Stockinger, T., Koelle, M., Lindemann, P., Witzani, L., & Kranz, M. (2013). SmartPiggy: A piggy bank that talks to your smartphone. In Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia (MUM ’13) (pp. 42:1–42:2). New York, NY, USA: ACM.Google Scholar
  42. Thaler, R. (1985). Mental accounting and consumer choice. Marketing Science, 4(3), 199–214.CrossRefGoogle Scholar
  43. Thaler, R. (1999). Mental accounting matters. Journal of Behavioral Decision Making, 12(3), 183–206.CrossRefGoogle Scholar
  44. Tractinsky, N. (1997). Aesthetics and apparent usability: Empirically assessing cultural and methodological issues. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’97) (pp. 115–122). New York, NY, USA: ACM.Google Scholar
  45. Wilkinson, N., & Klaes, M. (2008). An introduction to behavioral economics. New York, NY, USA: Palgrave Macmillan.Google Scholar
  46. Zichermann, G., & Cunningham, C. (2011). Gamification by design: Implementing game mechanics in web and mobile apps. Sebastopol, Canada: O’Reilly Media.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tobias Stockinger
    • 1
  • Marion Koelle
    • 1
  • Patrick Lindemann
    • 1
  • Matthias Kranz
    • 1
  • Stefan Diewald
    • 2
  • Andreas Möller
    • 2
  • Luis Roalter
    • 2
  1. 1.University of PassauPassauGermany
  2. 2.Distributed Multimodal Interaction GroupTechnische Universität MünchenMunichGermany

Personalised recommendations