Advertisement

Possible Production of Neutron-Rich Heavy Nuclei in Fissile Spallation Targets

  • Igor MishustinEmail author
  • Yury Malyshkin
  • Igor Pshenichnov
  • Walter Greiner
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

In recent years the interest of researchers is attracted to a new type of neutron sources using so-called Acceleration Driven Systems (ADS), where primary neutrons are produced in a spallation target irradiated by an intensive proton beam. We propose to use spallation targets made of fissile materials in order to increase the neutron flux due to the (n, fission) reaction. Such targets can be used for the incineration of nuclear waste (Minor Actinides) and for generating extra strong neutron fields for production of new elements in neutron capture reactions. We have developed a Monte Carlo model for ADS (MCADS) using the Geant4 toolkit. In this talk we present our studies on the physical conditions in such spallation targets and on the possibility of synthesizing transuranic elements in multiple neutron capture reactions.

Keywords

Neutron Flux Deuteron Beam Fissile Material Minor Actinide Target Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Valeri Zagrebaev for fruitful discussions. Our calculations were performed at the Center for Scientific Computing (CSC) of the Goethe University, Frankfurt am Main. We are grateful to the staff of the Center for support.

References

  1. 1.
    G.I. Bell, Phys. Rev. 158, 1127 (1967)CrossRefADSGoogle Scholar
  2. 2.
    H.W. Meldner, Phys. Rev. Lett. 28, 975 (1972)CrossRefADSGoogle Scholar
  3. 3.
    A. Botvina, I. Mishustin, V. Zagrebaev, W. Greiner, Int. J. Mod. Phys. 19, 2063 (2010)CrossRefADSGoogle Scholar
  4. 4.
    V.I. Zagrebaev, A.V. Karpov, I.N. Mishustin, W. Greiner, Phys. Rev. C 84, 044617 (2011)CrossRefADSGoogle Scholar
  5. 5.
    G.T. Seaborg, Annu. Rev. Nucl. Sci. 18, 119 (1968)CrossRefGoogle Scholar
  6. 6.
    Yu. Malyshkin, I. Pshenichnov, I. Mishustin, W. Greiner, EPJ Web Conf. 21, 10006 (2012)CrossRefGoogle Scholar
  7. 7.
    Yu. Malyshkin, I. Pshenichnov, I. Mishustin, T. Hughes, O. Heid, W. Greiner, Nucl. Inst. Meth. B 289, 79 (2012)Google Scholar
  8. 8.
    Yu. Malyshkin, I. Pshenichnov, I. Mishustin, and W. Greiner, in Proceedings of International Conferences on Nuclear Data for Science and Technology, New York (2013)Google Scholar
  9. 9.
    Yu. Malyshkin, I. Pshenichnov, I. Mishustin, W. Greiner, in Proceedings of the Joint International Conference of Supercomputing in Nuclear Applications and Monte Carlo Paris (2013)Google Scholar
  10. 10.
    J. Apostolakis et al., Radiat. Phys. Chem. 78, 859 (2009)CrossRefADSGoogle Scholar
  11. 11.
    S.V. Bakhmutkin, A.A. Nosov, A.A. Rimskii-Korsakov, At. Energiy. 63, 2 (1986)Google Scholar
  12. 12.
    A. Stankovsky, W. Saito, V. Artisyuk, A. Shmelev, Y. Korovin, J. Nucl. Sci. Technol. 38, 503 (2001)CrossRefGoogle Scholar
  13. 13.
    V.I. Zagrebaev, A.V. Karpov, W. Greiner, Phys. Rev. C 85, 014608 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Igor Mishustin
    • 1
    • 2
    Email author
  • Yury Malyshkin
    • 1
  • Igor Pshenichnov
    • 1
    • 3
  • Walter Greiner
    • 1
  1. 1.Frankfurt Institute for Advanced StudiesFrankfurtGermany
  2. 2.National Research Center “Kurchatov Institute”MoscowRussia
  3. 3.Institute for Nuclear ResearchRussian Academy of SciencesMoscowRussia

Personalised recommendations