Advertisement

Universal Logic as a Science of Patterns

  • Brian R. Gaines
Part of the Studies in Universal Logic book series (SUL)

Abstract

This article addresses Béziau’s (Sorites 12:5–32, 2001) vision that universal logic should be capable of helping other fields of knowledge to build the right logic for the right situation, and that for some disciplines mathematical abstract conceptualization is more appropriate than symbolic formalization. Hertz’s (Math. Ann. 87(3–4):246–269, 1922) diagrams of logical inference patterns are formalized and extended to present the universal logic conceptual framework as a comprehensible science of patterns. This facilitates those in other disciplines to develop, visualize and apply logical representation and inference structures that emerge from their problématique. A family of protologics is developed by resemantifying the sign for deduction, →, with inference patterns common to many logics, and specifying possible constraints on its use to represent the structural connectives and defeasible reasoning. Proof-theoretic, truth-theoretic, intensional and extensional protosemantics are derived that supervene on the inference patterns. Examples are given of applications problem areas in a range of other disciplines, including the representation of states of affairs, individuals and relations.

Keywords

Universal logic Inference patterns Protologic Protosemantics Structural connectives Paraconsistency Default reasoning Applied logic 

Mathematics Subject Classification (2000)

03B22 03A05 

References

  1. 1.
    Aristotle: Metaphysics (trans. William David Ross). In: Barnes, J. (ed.) The Complete Works of Aristotle, pp. 1552–1728. Princeton University Press, Princeton (1984) Google Scholar
  2. 2.
    Armstrong, D.M.: A World of States of Affairs. Cambridge Studies in Philosophy. Cambridge University Press, Cambridge (1997) Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook. Cambridge University Press, Cambridge (2003) zbMATHGoogle Scholar
  4. 4.
    Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms, and Applications. Springer, Berlin (2009) Google Scholar
  5. 5.
    Baumann, P.: Are proper names rigid designators? Axiomathes 20, 333–346 (2010) Google Scholar
  6. 6.
    Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G., Wolf, R.G. (eds.) Modern Uses of Multiple-Valued Logic, pp. 8–37. Reidel, Dordrecht (1977) Google Scholar
  7. 7.
    Bernays, P.: Probleme der theoretischen Logik. Unterr.bl. Math. Nat.wiss. 33, 369–377 (1927) Google Scholar
  8. 8.
    Bernays, P.: Die Philosphie der Mathematik und die Hilbertische Beweistheorie. Bl. dtsch. Philos. 4, 326–367 (1930–1931) Google Scholar
  9. 9.
    Béziau, J.-Y.: Universal logic. In: Childers, T., Majer, O. (eds.) Logica’94: Proceedings of the 8th International Symposium, pp. 73–93. Czech Academy of Sciences, Prague (1994) Google Scholar
  10. 10.
    Béziau, J.-Y.: La véritable portée du théorème de Lindenbaum–Asser. Log. Anal. 42(167–168), 341–359 (1999) zbMATHGoogle Scholar
  11. 11.
    Béziau, J.-Y.: From paraconsistent logic to universal logic. Sorites 12, 5–32 (2001) Google Scholar
  12. 12.
    Béziau, J.-Y.: Sequents and bivaluations. Log. Anal. 44(176), 373–394 (2001) zbMATHGoogle Scholar
  13. 13.
    Béziau, J.-Y.: 13 questions about universal logic. Bull. Sect. Log. 35(2–3), 133–150 (2006) zbMATHGoogle Scholar
  14. 14.
    Béziau, J.-Y.: From consequence operator to universal logic: a survey of general abstract logic. In: Béziau, J.-Y. (ed.) Logica Universalis, pp. 3–17. Birkhäuser, Basel (2007) Google Scholar
  15. 15.
    Béziau, J.-Y.: Logica Universalis: Towards a General Theory of Logic. Birkhäuser, Basel (2007) Google Scholar
  16. 16.
    Béziau, J.-Y.: Preface: is logic universal? Log. Univers. 4(2), 161–162 (2010) zbMATHMathSciNetGoogle Scholar
  17. 17.
    Béziau, J.-Y.: The power of the hexagon. Log. Univers. 6(1–2), 1–43 (2012) zbMATHMathSciNetGoogle Scholar
  18. 18.
    Béziau, J.-Y.: Universal Logic: An Anthology. Birkhäuser, Basel (2012) Google Scholar
  19. 19.
    Béziau, J.-Y.: The metalogical hexagon of opposition. Argumentos 10, 111–122 (2013) Google Scholar
  20. 20.
    Béziau, J.-Y., Carnielli, W.A., Gabbay, D.M. (eds.): Handbook of Paraconsistency. College publications, London (2007) zbMATHGoogle Scholar
  21. 21.
    Béziau, J.-Y., Dale, J.: Around and Beyond the Square of Opposition. Studies in Universal Logic. Birkhäuser, Basel (2012) zbMATHGoogle Scholar
  22. 22.
    Béziau, J.-Y., Payette, G.: The Square of Opposition: A General Framework for Cognition. Lang, Bern (2012) Google Scholar
  23. 23.
    Birkhoff, G.: Universal algebra. In: Proceedings of the First Canadian Mathematical Congress 1945, pp. 310–326. University of Toronto Press, Toronto (1946) Google Scholar
  24. 24.
    Blanché, R.: Sur l’opposition des concepts. Theoria 19(3), 89–130 (1953) Google Scholar
  25. 25.
    Bourbaki, N.: The architecture of mathematics. Am. Math. Mon. 57(4), 221–232 (1950) zbMATHMathSciNetGoogle Scholar
  26. 26.
    Brady, R.T.: Universal Logic. CSLI, Stanford (2006) zbMATHGoogle Scholar
  27. 27.
    Brandom, R.: Between Saying and Doing: Towards an Analytic Pragmatism. Oxford University Press, Oxford (2008) Google Scholar
  28. 28.
    Campbell, K.: Family resemblance predicates. Am. Philos. Q. 2(3), 238–244 (1965) Google Scholar
  29. 29.
    Carnielli, W.A., Coniglio, M.E., D’Ottaviano, I.M.L.: New dimensions on translations between logics. Log. Univers. 3, 1–18 (2009) zbMATHMathSciNetGoogle Scholar
  30. 30.
    Carroll, N.: Theories of Art Today. University of Wisconsin Press, Madison (2000) Google Scholar
  31. 31.
    Castañeda, H.-N.: Individuation and non-identity: a new look. Am. Philos. Q. 12(2), 131–140 (1975) Google Scholar
  32. 32.
    Cendrowska, J.: An algorithm for inducing modular rules. Int. J. Man-Mach. Stud. 27(4), 349–370 (1987) zbMATHGoogle Scholar
  33. 33.
    Clark, J.T.: Conventional Logic and Modern Logic: A Prelude to Transition. Philosophical Studies of the American Catholic Philosophical Association. Woodstock College Press, Woodstock (1952) Google Scholar
  34. 34.
    Corcoran, J.: Completeness of an ancient logic. J. Symb. Log. 37(4), 696–702 (1972) MathSciNetGoogle Scholar
  35. 35.
    Davies, S.: Definitions of Art. Cornell University Press, Ithaca (1991) Google Scholar
  36. 36.
    de Duve, T.: Pictorial Nominalism on Marcel Duchamp’s Passage from Painting to the Readymade. University of Minnesota Press, Minneapolis (1991) Google Scholar
  37. 37.
    De Morgan, A.: On the symbols of logic, the theory of the syllogism, and in particular of the copula, and the application of the theory of probabilities to questions of argument and authority. Trans. Camb. Philos. Soc. 9, 79–127 (1856) Google Scholar
  38. 38.
    Dunn, J.M.: Generalized ortho negation. In: Wansing, H. (ed.) Negation: A Notion in Focus, pp. 3–26. de Gruyter, Berlin (1996) Google Scholar
  39. 39.
    Dutilh Novaes, C.: The different ways in which logic is (said to be) formal. Hist. Philos. Logic 32(4), 303–332 (2011) zbMATHMathSciNetGoogle Scholar
  40. 40.
    Dutilh Novaes, C.: Formal Languages in Logic: A Philosophical and Cognitive Analysis. Cambridge University Press, Cambridge (2012) Google Scholar
  41. 41.
    Eberle, R.A.: Goodman on likeness and difference of meaning. Erkenntnis 12, 3–16 (1978) Google Scholar
  42. 42.
    Edgington, D.: On conditionals. Mind 104(414), 235–329 (1995) MathSciNetGoogle Scholar
  43. 43.
    Engel, P.: The Norm of Truth: An Introduction to the Philosophy of Logic. University of Toronto Press, Toronto (1991) Google Scholar
  44. 44.
    Fahlman, S.E.: NETL, a System for Representing and Using Real-World Knowledge. MIT Press, Cambridge (1979) zbMATHGoogle Scholar
  45. 45.
    Ferejohn, M.T.: Plato and Aristotle on negative predication and semantic fragmentation. Arch. Gesch. Philos. 71(3), 257–282 (1989) Google Scholar
  46. 46.
    Fine, K.: Neutral relations. Philos. Rev. 109(1), 1–33 (2000) Google Scholar
  47. 47.
    Flach, P.A., Kakas, A.C.: Abductive and inductive reasoning: background and issues. In: Flach, P.A., Kakas, A.C. (eds.) Abduction and Induction: Essays on Their Relation and Integration, pp. 1–27. Kluwer, Dordrecht (2000) Google Scholar
  48. 48.
    Frege, G.: Über Sinn und Bedeutung. Z. Philos. philos. Krit. 100, 25–50 (1892) Google Scholar
  49. 49.
    Frege, G.: Gottlob Freges Briefwechsel mit D. Hilbert, E. Husserl, B. Russell, sowie ausgewählte Einzelbriefe Freges. Meiner, Hamburg (1980) Google Scholar
  50. 50.
    Gaines, B.R.: An interactive visual language for term subsumption visual languages. In: IJCAI91: Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, pp. 817–823. Morgan Kaufmann, San Mateo (1991) Google Scholar
  51. 51.
    Gaines, B.R.: Designing visual languages for description logics. J. Log. Lang. Inf. 18(2), 217–250 (2009) Google Scholar
  52. 52.
    Gaines, B.R.: Human rationality challenges universal logic. Log. Univers. 4(2), 163–205 (2010) zbMATHMathSciNetGoogle Scholar
  53. 53.
    Galatos, N., Jipsen, P., Kowalsi, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam (2007) Google Scholar
  54. 54.
    Gaskin, R., Hill, D.J.: On neutral relations. Dialectica 66(1), 167–186 (2012) MathSciNetGoogle Scholar
  55. 55.
    Gasking, D.: Clusters. Australas. J. Philos. 38(1), 1–36 (1960) Google Scholar
  56. 56.
    Gaut, B.: “Art” as a cluster concept. In: Carroll, N. (ed.) Theories of Art Today, pp. 25–44. University of Wisconsin Press, Madison (2000) Google Scholar
  57. 57.
    Gentzen, G.: Untersuchungen über das logische Schließen. I. Math. Z. 39(1), 176–210 (1935) MathSciNetGoogle Scholar
  58. 58.
    Gentzen, G.: Über das verhältnis zwischen intuitionistischer und klassischer Arithmetik. Arch. Math. Log. Grundl.forsch. 16(3–4), 119–132 (1974) (orig. 1933) zbMATHMathSciNetGoogle Scholar
  59. 59.
    Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987) zbMATHMathSciNetGoogle Scholar
  60. 60.
    Glashoff, K.: An intensional Leibniz semantics for Aristotelian logic. Rev. Symb. Log. 3(02), 262–272 (2010) zbMATHMathSciNetGoogle Scholar
  61. 61.
    Gracia, J.J.E.: Individuals as instances. Rev. Metaphys. 37(1), 37–59 (1983) Google Scholar
  62. 62.
    Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: theory and practice. J. Artif. Intell. Res. 31, 273–318 (2008) zbMATHGoogle Scholar
  63. 63.
    Gupta, A.: A critique of deflationism. Philos. Top. 21(2), 57–81 (1993) Google Scholar
  64. 64.
    Harary, F., Gupta, G.: Dynamic graph models. Math. Comput. Model. 25(7), 79–87 (1997) zbMATHMathSciNetGoogle Scholar
  65. 65.
    Harary, F., Norman, R.Z., Cartwright, D.: Structural Models: An Introduction to the Theory of Directed Graphs. Wiley, Chichester (1965) zbMATHGoogle Scholar
  66. 66.
    Heeffer, A.: Algebraic symbolism as a conceptual barrier in learning mathematics. In: Proceedings 6th East Asia Regional Conference on Mathematics Education (EARCOME 6), Phuket, Thailand, vol. 6, pp. 2–10 (2013) Google Scholar
  67. 67.
    Hertz, P.: Über Axiomensysteme für beliebige Satzsysteme I: Sätze ersten Grades. (Über die Axiomensysteme von der kleinsten Satzzahl und den Begriff des Idealen Elementes). Math. Ann. 87(3–4), 246–269 (1922). (English trans. Javier Legris [18, 11–29]) zbMATHMathSciNetGoogle Scholar
  68. 68.
    Hilbert, D.: Über die Theorie der algebraischen Formen. Math. Ann. 36(4), 473–534 (1890) zbMATHMathSciNetGoogle Scholar
  69. 69.
    Hilbert, D.: Grundlagen der Geometrie. Teubner, Leipzig (1899) Google Scholar
  70. 70.
    Hilbert, D.: Axiomatisches Denken. Math. Ann. 78(1–4), 405–415 (1917) zbMATHMathSciNetGoogle Scholar
  71. 71.
    Hilbert, D.: Über das Unendliche. Math. Ann. 95(1), 161–190 (1926) MathSciNetGoogle Scholar
  72. 72.
    Jago, M.: Setting the facts straight. J. Philos. Log. 40(1), 33–54 (2011) zbMATHMathSciNetGoogle Scholar
  73. 73.
    Koslow, A.: A Structuralist Theory of Logic. Cambridge University Press, Cambridge (1992) zbMATHGoogle Scholar
  74. 74.
    Koslow, A.: Structuralist logic: implications, inferences, and consequences. Log. Univers. 1(1), 167–181 (2007) zbMATHMathSciNetGoogle Scholar
  75. 75.
    Krämer, S.: Operative Schriften als Geistestechnik. Zur Vorgeschichte der Informatik. In: Schefe, P., Hastedt, H., Keilg, Y. (eds.) Informatik und Philosophie, pp. 69–84. Spektrum, Heidelberg (1993) Google Scholar
  76. 76.
    Künne, W.: Conceptions of Truth. Clarendon Press, Oxford (2003) zbMATHGoogle Scholar
  77. 77.
    Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell. 15, 61–82 (1995) zbMATHGoogle Scholar
  78. 78.
    Londey, D., Johanson, C.: The Logic of Apuleius: Including a Complete Latin Text and English Translation of the Peri Hermeneias of Apuleius of Madaura. Brill, Leiden (1987) Google Scholar
  79. 79.
    Lorenzen, P.: Protologik. Kant-Stud. 47(1–4), 350 (1956) Google Scholar
  80. 80.
    Martin, J.M.: Aristotle’s natural deduction reconsidered. Hist. Philos. Logic 18(1), 1–15 (1997) zbMATHMathSciNetGoogle Scholar
  81. 81.
    Meinong, A.: Über die Stellung der Gegenstandstheorie im System der Wissenschaften. Voigtländer, Leipzig (1907) Google Scholar
  82. 82.
    Millikan, R.G.: On Clear and Confused Ideas: An Essay About Substance Concepts. Cambridge University Press, Cambridge (2000) Google Scholar
  83. 83.
    Noether, M.: Paul Gordan. Math. Ann. 75, 1–41 (1914) MathSciNetGoogle Scholar
  84. 84.
    Orilia, F.: Singular Reference: A Descriptivist Perspective. Springer, Dordrecht (2010) Google Scholar
  85. 85.
    Orilia, F.: Relational order and onto-thematic roles. Metaphysica 12(1), 1–18 (2011) Google Scholar
  86. 86.
    Pagès, J.: Structural universals and formal relations. Synthese 131(2), 215–221 (2002) Google Scholar
  87. 87.
    Pelczar, M., Rainsbury, J.: The indexical character of names. Synthese 114(2), 293–317 (1998) MathSciNetGoogle Scholar
  88. 88.
    Perry, J.: A problem about continued belief. Pac. Philos. Q. 61, 317–332 (1980) Google Scholar
  89. 89.
    Plato: The Statesman. Harvard University Press, Cambridge (1952) (Harold North Fowler, trans.) Google Scholar
  90. 90.
    Priest, G.: Sense, entailment and modus ponens. J. Philos. Log. 9, 415–435 (1980) zbMATHMathSciNetGoogle Scholar
  91. 91.
    Priest, G., Routley, R.: A preliminary history of paraconsistent and dialethic approaches. In: Priest, G., Routley, R., Norman, J., Arruda, A.I. (eds.) Paraconsistent Logic: Essays on the Inconsistent, pp. 3–75. Philosophia, München (1989) Google Scholar
  92. 92.
    Ramsey, F.P.: Universals. Mind 34(136), 401–417 (1925) Google Scholar
  93. 93.
    Récanati, F.: Mental Files. Oxford University Press, Oxford (2013) Google Scholar
  94. 94.
    Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980) zbMATHMathSciNetGoogle Scholar
  95. 95.
    Resnik, M.D.: Mathematics as a Science of Patterns. Clarendon Press, Oxford (1997) zbMATHGoogle Scholar
  96. 96.
    Rogers, E.M.: Diffusion of Innovations, 5th edn. Free Press, New York (2003) Google Scholar
  97. 97.
    Russell, B.: On the relations of universals and particulars. Proc. Aristot. Soc. 12, 1–24 (1911) Google Scholar
  98. 98.
    Ryan, M.-L.: Fiction, non-factuals, and the principle of minimal departure. Poetics 9(4), 403–422 (1980) Google Scholar
  99. 99.
    Schönfinkel, M.: Über die Bausteine der mathematischen Logik. Math. Ann. 92(3–4), 305–316 (1924) zbMATHMathSciNetGoogle Scholar
  100. 100.
    Stalnaker, R.: What is a nonmonotonic consequence relation? Fundam. Inform. 21, 7–21 (1994) zbMATHMathSciNetGoogle Scholar
  101. 101.
    Straßburger, L.: What is a logic, and what is a proof? In: Béziau, J.-Y. (ed.) Logica Universalis, pp. 135–152. Birkhäuser, Basel (2007) Google Scholar
  102. 102.
    Strawson, P.F.: Strawson, Individuals, an Essay in Descriptive Metaphysics. Methuen, London (1959) Google Scholar
  103. 103.
    Thau, D., Ludäscher, B.: Reasoning about taxonomies in first-order logic. Ecol. Inform. 2(3), 195–209 (2007) Google Scholar
  104. 104.
    Vaihinger, H.: Die Philosophie des Als Ob: System der theoretischen, praktischen und religiösen Fiktionen der Menschheit auf Grund eines idealistischen Positivismus. Meiner, Leipzig (1922) Google Scholar
  105. 105.
    van der Sluijs, M.A.: Who are the “attendants of Helios”? J. Am. Orient. Soc. 129(2), 169–177 (2009) Google Scholar
  106. 106.
    Weitz, M.: The Opening Mind: A Philosophical Study of Humanistic Concepts. University of Chicago Press, Chicago (1977) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of VictoriaVictoriaCanada
  2. 2.University of CalgaryCalgaryCanada

Personalised recommendations