An Analysis Pathway for the Quantitative Evaluation of Public Transport Systems

  • Stephen Gilmore
  • Mirco Tribastone
  • Andrea Vandin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8739)


We consider the problem of evaluating quantitative service-level agreements in public services such as transportation systems. We describe the integration of quantitative analysis tools for data fitting, model generation, simulation, and statistical model-checking, creating an analysis pathway leading from system measurement data to verification results. We apply our pathway to the problem of determining whether public bus systems are delivering an appropriate quality of service as required by regulators. We exercise the pathway on service data obtained from Lothian Buses about the arrival and departure times of their buses on key bus routes through the city of Edinburgh. Although we include only that example in the present paper, our methods are sufficiently general to apply to other transport systems and other cities.


Journey Time Analysis Pathway Temporal Logic Erlang Distribution Public Transport System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tang, L., (Vonu) Thakuriah, P.: Ridership effects of real-time bus information system: A case study in the city of Chicago. Transportation Research Part C: Emerging Technologies 22, 146–161 (2012)Google Scholar
  2. 2.
    The City of Edinburgh Council. Bus Tracker Edinburgh real-time bus information website (2014),
  3. 3.
    Reinecke, P., Krauß, T., Wolter, K.: Phase-type fitting using HyperStar. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 164–175. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis of biological systems. Theoretical Computer Science 410(33-34), 3065–3084 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Sebastio, S., Vandin, A.: MultiVeStA: Statistical model checking for discrete event simulators. In: 7th International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS, Torino, Italy (December 2013)Google Scholar
  6. 6.
    Duguid, A., Gilmore, S., Guerriero, M.L., Hillston, J., Loewe, L.: Design and development of software tools for Bio-PEPA. In: Dunkin, A., Ingalls, R.G., Yücesan, E., Rossetti, M.D., Hill, R., Johansson, B. (eds.) Winter Simulation Conference, WSC, pp. 956–967 (2009)Google Scholar
  7. 7.
    Vissat, L.L., Clark, A., Gilmore, S.: Finding optimal timetables for Edinburgh bus routes. In: Proceedings of the Seventh International Workshop on Practical Applications of Stochastic Modelling (PASM 2014), Newcastle, England (May 2014)Google Scholar
  8. 8.
    Kemper, P., Tepperp, C.: Automated trace analysis of discrete-event system models. IEEE Trans. Software Eng. 35(2), 195–208 (2009)CrossRefGoogle Scholar
  9. 9.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Czarnecki, K., Eiseneckerp, U.W.: Generative Programming: Methods, Tools, and Applications. Addison-Wesley (2000)Google Scholar
  11. 11.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) ICSE, pp. 411–420. ACM (1999)Google Scholar
  12. 12.
    Reed, S.: Transport for London—Using tools, analytics and data to inform passengers. Journeys, 96–104 (September 2013)Google Scholar
  13. 13.
    Tranter, M.: Department for Transport—annual bus statistics: England 2012/2013 (September 2013)Google Scholar
  14. 14.
    Smarter Scotland: Scottish Government. Bus Punctuality Improvement Partnerships (BPIP) (March 2009)Google Scholar
  15. 15.
    Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation. Princeton University Press (2009)Google Scholar
  16. 16.
    Massink, M., Latella, D., Bracciali, A., Hillston, J.: Modelling non-linear crowd dynamics in Bio-PEPA. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 96–110. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Massink, M., Latella, D., Bracciali, A., Harrison, M.D., Hillston, J.: Scalable context-dependent analysis of emergency egress models. Formal Aspects of Computing 24(2), 267–302 (2012)CrossRefGoogle Scholar
  18. 18.
    Massink, M., Brambilla, M., Latella, D., Dorigo, M., Birattari, M.: On the use of Bio-PEPA for modelling and analysing collective behaviours in swarm robotics. Swarm Intelligence 7(2-3), 201–228 (2013)CrossRefGoogle Scholar
  19. 19.
    Belzner, L., De Nicola, R., Vandin, A., Wirsing, M.: Reasoning (on) service component ensembles in rewriting logic. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 188–211. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  20. 20.
    Sebastio, S., Amoretti, M., Lluch-Lafuente, A.: A computational field framework for collaborative task execution in volunteer clouds. In: Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2014) (2014)Google Scholar
  21. 21.
    Pianini, D., Sebastio, S., Vandin, A.: Distributed statistical analysis of complex systems modeled through a chemical metaphor. In: 5th International Workshop on Modeling and Simulation of Peer-to-Peer and Autonomic Systems (MOSPAS 2014) (2014)Google Scholar
  22. 22.
    Aziz, A., Singhal, V., Balarin, F., Brayton, R., Sangiovanni-Vincentelli, A.L.: It usually works: The temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  23. 23.
    Baier, C., Katoen, J.-P., Hermanns, H.: Approximate Symbolic Model Checking of Continuous-Time Markov Chains (Extended Abstract). In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Comput. 6(5), 512–535 (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stephen Gilmore
    • 2
  • Mirco Tribastone
    • 1
  • Andrea Vandin
    • 1
  1. 1.Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK
  2. 2.Laboratory for Foundations of Computer ScienceUniversity of EdinburghEdinburghUK

Personalised recommendations