Advertisement

Verifying Modal Workflow Specifications Using Constraint Solving

  • Hadrien Bride
  • Olga Kouchnarenko
  • Fabien Peureux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8739)

Abstract

Nowadays workflows are extensively used by companies to improve organizational efficiency and productivity. This paper focuses on the verification of modal workflow specifications using constraint solving as a computational tool. Its main contribution consists in developing an innovative formal framework based on constraint systems to model executions of workflow Petri nets and their structural properties, as well as to verify their modal specifications. Finally, an implementation and promising experimental results constitute a practical contribution.

Keywords

Modal specifications Workflow Petri nets Verification of Business Processes Constraint Logic Programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet another workflow language. Journal of Information Systems 30(4), 245–275 (2005)CrossRefGoogle Scholar
  2. 2.
    Dumas, M., ter Hofstede, A.H.M.: UML activity diagrams as a workflow specification language. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 76–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P.: The application of Petri nets to workflow management. Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)Google Scholar
  4. 4.
    van der Aalst, W.M.P.: Three good reasons for using a Petri-net-based workflow management system. Journal of Information and Process Integration in Enterprises 428, 161–182 (1997)Google Scholar
  5. 5.
    Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 232–246. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Macworth, A.K.: Consistency in networks of relations. Journal of Artificial Intelligence 8(1), 99–118 (1977)CrossRefGoogle Scholar
  9. 9.
    Tsang, E.: Foundation of constraint satisfaction. Academic Press (1993)Google Scholar
  10. 10.
    van Hee, K., et al.: Yasper: a tool for workflow modeling and analysis. In: Proc. of the 6th Int. Conf. on Application of Concurrency to System Design (ACSD 2006), Turku, Finland, pp. 279–282. IEEE CS (June 2006)Google Scholar
  11. 11.
    Bonet, P., Lladó, C.M., Puijaner, R., Knottenbelt, W.J.: PIPE v2.5: A Petri net tool for performance modelling. In: Proc. of the 23rd Latin American Conference on Informatics (CLEI 2007), San Jose, Costa Rica (October 2007)Google Scholar
  12. 12.
    Carlsson, M., et al.: SICStus Prolog user’s manual (Release 4.2.3). Swedish Institute of Computer Science, Kista, Sweden (October 2012)Google Scholar
  13. 13.
    Kouchnarenko, O., Sidorova, N., Trcka, N.: Petri nets with may/must semantics. In: Proc. of the Workshop on Concurrency, Specification, and Programming (CS&P 2009), Kraków-Przegorzaly, Poland, pp. 291–302 (September 2009)Google Scholar
  14. 14.
    van der Aalst, W.M.P.: Business process management demystified: A tutorial on models, systems and standards for workflow management. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 1–65. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: Proc. of the 3rd Annual Symp. on Logic in Computer Science (LICS 1988), pp. 203–210. IEEE (July 1988)Google Scholar
  16. 16.
    Elhog-Benzina, D., Haddad, S., Hennicker, R.: Refinement and asynchronous composition of modal petri nets. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) ToPNoC V. LNCS, vol. 6900, pp. 96–120. Springer, Heidelberg (2012)Google Scholar
  17. 17.
    Desel, J.: Basic linear algebraic techniques for place/transition nets. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 257–308. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 224–238. Springer, Heidelberg (2011)Google Scholar
  19. 19.
    Schmidt, K.: Narrowing Petri net state spaces using the state equation. Fundamenta Informaticae 47(3-4), 325–335 (2001)Google Scholar
  20. 20.
    Soliman, S.: Finding minimal P/T-invariants as a CSP. In: Proc. of the 4th Workshop on Constraint Based Methods for Bioinformatics (WCB 2008) (May 2008)Google Scholar
  21. 21.
    Melzer, S., Esparza, J.: Checking system properties via integer programming. In: Riis Nielson, H. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 250–264. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  22. 22.
    Bourdeaud’huy, T., Hanafi, S., Yim, P.: Incremental integer linear programming models for Petri nets reachability problems. Petri Net: Theory and Applications, pp. 401–434 (February 2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hadrien Bride
    • 1
    • 2
  • Olga Kouchnarenko
    • 1
    • 2
  • Fabien Peureux
    • 1
  1. 1.Institut FEMTO-ST – UMR CNRS 6174University of Franche-ComtéBesançonFrance
  2. 2.Inria Nancy Grand Est – CASSIS ProjectVandœuvre-lès-Nancy cedexFrance

Personalised recommendations