Constructs Competition Miner: Process Control-Flow Discovery of BP-Domain Constructs

  • David Redlich
  • Thomas Molka
  • Wasif Gilani
  • Gordon Blair
  • Awais Rashid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8659)

Abstract

Process Discovery techniques help a business analyst to understand the actual processes deployed in an organization, i.e. based on a log of events, the actual activity workflow is discovered. In most cases their results conform to general purpose representations like Petri nets or Causal nets which are preferred by academic scholars but difficult to comprehend for business analysts. In this paper we propose an algorithm that follows a top-down approach to directly mine a process model which consists of common BP-domain constructs and represents the main behaviour of the process. The algorithm is designed so it can deal with noise and not-supported behaviour. This is achieved by letting the different supported constructs compete with each other for the most suitable solution from top to bottom using ”soft” constraints and behaviour approximations. The key parts of the algorithm are formally described and evaluation results are presented and discussed.

Keywords

business process models business process management process discovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buijs, J., Van Dongen, B., Van Der Aalst, W.: A genetic algorithm for discovering process trees. In: Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)Google Scholar
  2. 2.
    Dehnert, J., Van Der Aalst, W.: Bridging The Gap Between Business Models And Workflow Specifications. Int. J. Cooperative Inf. Syst. 13, 289–332 (2004)CrossRefGoogle Scholar
  3. 3.
    Galushka, M., Gilani, W.: DrugFusion - Retrieval Knowledge Management for Prediction of Adverse Drug Events. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS 2014. LNBIP, vol. 176, pp. 13–24. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. 4.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured Process Models from Event Logs - A Constructive Approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Leemans, S., Fahland, D., Van Der Aalst, W.: Discovering Block-Structured Process Models from Event Logs Containing Infrequent Behaviour, In: Business Process Management Workshops 2013, LNBIP, pp. 66–78, Springer (2013)Google Scholar
  7. 7.
    OMG Inc: Business Process Model and Notation (BPMN) Specification 2.0 (2011), http://www.omg.org/spec/BPMN/2.0/PDF (formal January 03, 2011)
  8. 8.
    Petri, C.A.: Kommunikation mit Automaten. PhD thesis. Rheinisch-Westfälisches Institut f. instrumentelle Mathematik (1962)Google Scholar
  9. 9.
    Polyvyanyy, A., García-Bañuelos, L., Fahland, D., Weske, M.: Maximal Structuring of Acyclic Process Models. The Computer Journal 57(1), 12–35 (2014)CrossRefGoogle Scholar
  10. 10.
    Weijters, A., Van Der Aalst, W., Alves de Medeiros, A.: Process Mining with the Heuristics Miner-algorithm. BETA Working Paper Series, WP 166, Eindhoven University of Technology (2006)Google Scholar
  11. 11.
    Van Der Aalst, W., Weijters, A., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  12. 12.
    Van Der Aalst, W., Ter Hofstede, A.: YAWL: Yet Another Workflow Language (2003)Google Scholar
  13. 13.
    Van Der Aalst, W.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  14. 14.
    Van Der Aalst, W., Adriansyah, A., Van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. WIREs Data Mining and Knowledge Discovery 2(2), 182–192 (2012)CrossRefGoogle Scholar
  15. 15.
    Van Dongen, B., De Medeiros, A., Verbeek, H., Weijters, A., Van Der Aalst, W.: The ProM framework: A new era in process mining tool support. Applications and Theory of Petri Nets 2005, pp. 1105–1116 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David Redlich
    • 1
    • 2
  • Thomas Molka
    • 1
    • 3
  • Wasif Gilani
    • 1
  • Gordon Blair
    • 2
  • Awais Rashid
    • 2
  1. 1.SAP Research Center BelfastUnited Kingdom
  2. 2.Lancaster UniversityUnited Kingdom
  3. 3.University of ManchesterUnited Kingdom

Personalised recommendations