Beyond Tasks and Gateways: Discovering BPMN Models with Subprocesses, Boundary Events and Activity Markers

  • Raffaele Conforti
  • Marlon Dumas
  • Luciano García-Bañuelos
  • Marcello La Rosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8659)


Existing techniques for automated discovery of process models from event logs generally produce flat process models. Thus, they fail to exploit the notion of subprocess, as well as error handling and repetition constructs provided by contemporary process modeling notations, such as the Business Process Model and Notation (BPMN). This paper presents a technique for automated discovery of BPMN models containing subprocesses, interrupting and non-interrupting boundary events and activity markers. The technique analyzes dependencies between data attributes attached to events in order to identify subprocesses and to extract their associated logs. Parent process and subprocess models are then discovered using existing techniques for flat process model discovery. Finally, the resulting models and logs are heuristically analyzed in order to identify boundary events and markers. A validation with one synthetic and two real-life logs shows that process models derived using the proposed technique are more accurate and less complex than those derived with flat process discovery techniques.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: Proc. of EDOC. IEEE (2011)Google Scholar
  2. 2.
    Rolón, E., Cardoso, J., García, F., Ruiz, F., Piattini, M.: Analysis and validation of control-flow complexity measures with BPMN process models. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) BPMDS 2009 and EMMSAD 2009. LNBIP, vol. 29, pp. 58–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bauckmann, J., Leser, U., Naumann, F.: Efficient and exact computation of inclusion dependencies for data integration. Technical Report 34, Hasso-Plattner-Institute (2010)Google Scholar
  4. 4.
    Alves de Medeiros, A.K.: Genetic Process Mining. PhD thesis, Eindhoven University of Technology (2006)Google Scholar
  5. 5.
    Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in bpmn. Information & Software Technology 50(12) (2008)Google Scholar
  6. 6.
    Ekanayake, C.C., Dumas, M., García-Bañuelos, L., La Rosa, M.: Slice, mine and dice: Complexity-aware automated discovery of business process models. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 49–64. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Favre, C., Fahland, D., Völzer, H.: The relationship between workflow graphs and free-choice workflow nets. Information Systems (in press, 2014)Google Scholar
  8. 8.
    Greco, G., Guzzo, A., Pontieri, L.: Mining taxonomies of process models. Data Knowl. Eng. 67(1) (2008)Google Scholar
  9. 9.
    Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: An efficient algorithm for discovering functional and approximate dependencies. Computer Journal 42(2) (1999)Google Scholar
  10. 10.
    Kalenkova, A., Lomazova, I.A.: Discovery of cancellation regions within process mining techniques. In: Proc. of CS&P Workshop. CEUR Workshop Proceedings, vol. 1032, (2013)Google Scholar
  11. 11.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - A constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Li, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Mining context-dependent and interactive business process maps using execution patterns. In: zur Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 109–121. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Mendling, J., Reijers, H.A., Cardoso, J.: What Makes Process Models Understandable? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Muñoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Nooijen, E.H.J., van Dongen, B.F., Fahland, D.: Automatic discovery of data-centric and artifact-centric processes. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP, vol. 132, pp. 316–327. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. CoRR abs/1303.2554 (2013)Google Scholar
  17. 17.
    Reijers, H.A., Mendling, J.: A study into the factors that influence the understandability of business process models. IEEE T. Syst. Man Cy. A 41(3) (2011)Google Scholar
  18. 18.
    Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 4th edn. McGraw-Hill Book Company (2001)Google Scholar
  19. 19.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  20. 20.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9) (2004)Google Scholar
  21. 21.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. Fundam. Inform. 94(3-4) (2009)Google Scholar
  22. 22.
    vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: Fodina: a robust and flexible heuristic process discovery technique, (last accessed: March 27, 2014)
  23. 23.
    vanden Broucke, S.K.L.M., De Weerdt, J., Baesens, B., Vanthienen, J.: Improved artificial negative event generation to enhance process event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 254–269. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37(7) (2012)Google Scholar
  25. 25.
    Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible Heuristics Miner (FHM). In: Proc. of CIDM. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Raffaele Conforti
    • 1
  • Marlon Dumas
    • 2
  • Luciano García-Bañuelos
    • 2
  • Marcello La Rosa
    • 1
    • 3
  1. 1.Queensland University of TechnologyAustralia
  2. 2.University of TartuEstonia
  3. 3.NICTA Queensland LabAustralia

Personalised recommendations