Behavioral Comparison of Process Models Based on Canonically Reduced Event Structures

  • Abel Armas-Cervantes
  • Paolo Baldan
  • Marlon Dumas
  • Luciano García-Bañuelos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8659)

Abstract

We address the problem of diagnosing behavioral differences between pairs of business process models. Specifically, given two process models, we seek to determine if they are behaviorally equivalent, and if not, we seek to describe their differences in terms of behavioral relations captured in one model but not in the other. The proposed solution is based on a translation from process models to Asymmetric Event Structures (AES). A naïve version of this translation suffers from two limitations. First, it produces redundant difference diagnostic statements because an AES may contain unnecessary event duplication. Second, it is not applicable to process models with cycles. To tackle the first limitation, we propose a technique to reduce event duplication in an AES while preserving canonicity. For the second limitation, we propose a notion of unfolding that captures all possible causes of each event in a cycle. From there we derive an AES where repeated events are distinguished from non-repeated ones and that allows us to diagnose differences in terms of repetition and causal relations in one model but not in the other.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business process models: Metrics and evaluation. Inf. Sys. 36(2), 498–516 (2011)CrossRefGoogle Scholar
  2. 2.
    La Rosa, M., Clemens, S., ter Hofstede, A.H.M., Russell, N.: Appendix A. The Order Fulfillment Process Model. In: Modern Business Process Automation 2010 (2010)Google Scholar
  3. 3.
    Nielsen, M., Plotkin, G.D., Winskel, G.: Petri Nets, Event Structures and Domains, Part I. Theoretical Computer Science 13, 85–108 (1981)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Baldan, P., Corradini, A., Montanari, U.: Contextual Petri Nets, Asymmetric Event Structures, and Processes. Information and Computation 171, 1–49 (2001)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Armas, A., Baldan, P., García-Bañuelos, L.: Reduction of event structures under hp-bisimulation. Technical report, http://arxiv.org/abs/1403.7181
  6. 6.
    Polyvyany, A., García-Bañuelos, L., Dumas, M.: Structuring acyclic process models. Information Systems 37(6), 518–538 (2012)CrossRefGoogle Scholar
  7. 7.
    van Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for concurrent systems. Acta Informatica 37, 229–327 (2001)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Cleaveland, R.: On automatically explaining bisimulation inequivalence. In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 364–372. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  9. 9.
    Sokolsky, O., Kannan, S., Lee, I.: Simulation-Based Graph Similarity. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 426–440. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Dijkman, R.: Diagnosing Differences between Business Process Models. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 261–277. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement Based on Behavioral Profiles of Process Models. IEEE TSE 37(3), 410–429 (2011)MathSciNetGoogle Scholar
  12. 12.
    Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal Behavioural Profiles. Fundamenta Informaticae 113(3-4), 399–435 (2011)MATHMathSciNetGoogle Scholar
  13. 13.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE TKDE 16(9), 1128–1142 (2004)Google Scholar
  14. 14.
    Badouel, E.: On the α-Reconstructibility of Workflow Nets. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 128–147. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Weidlich, M., van der Werf, J.M.: On Profiles and Footprints – Relational Semantics for Petri Nets. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 148–167. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28, 575–591 (1991)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    van Glabbeek, R., Goltz, U.: Equivalence notions for concurrent systems and refinement of actions.. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS, vol. 379, pp. 237–248. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  18. 18.
    Armas, A., Baldan, P., Dumas, M., García-Bañuelos, L.: Behavioral comparison of process models based on canonically reduced event structures. Technical report It is, available at, http://math.ut.ee/~abela
  19. 19.
    McKay, B.D.: Practical graph isomorphism. Department of Computer Science, Vanderbilt University (1981)Google Scholar
  20. 20.
    Kant, G.: Using canonical forms for isomorphism reduction in graph-based model checking. Technical report, CTIT University of Twente, Enschede (July 2010)Google Scholar
  21. 21.
    McMillan, K.L., Probst, D.K.: A Technique of State Space Search Based on Unfolding. Formal Methods in System Design 6(1), 45–65 (1995)CrossRefMATHGoogle Scholar
  22. 22.
    Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding Algorithm. Formal Methods in System Design 30(2), 285–310 (2002)CrossRefGoogle Scholar
  23. 23.
    Khomenko, W.V., Koutny, M., Vogler: Canonical prefixes of Petri net unfoldings. Acta Informatica 40(2), 95–118 (2003)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Abel Armas-Cervantes
    • 1
  • Paolo Baldan
    • 2
  • Marlon Dumas
    • 1
  • Luciano García-Bañuelos
    • 1
  1. 1.Institute of Computer ScienceUniversity of TartuEstonia
  2. 2.Department of MathematicsUniversity of PadovaItaly

Personalised recommendations