Advertisement

Architecture of Mobile Crowdsourcing Systems

  • Frank Fuchs-Kittowski
  • Daniel Faust
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8658)

Abstract

This paper proposes a general architecture and a classification scheme for mobile crowdsourcing systems, which are illustrated by two example applications. The aim is to gain a better understanding of typical functionalities and design aspects to be considered during development and evaluation of such collaborative systems.

Keywords

crowdsourcing crowdsourcing system mobile crowdsourcing crowdsourcing application architecture classification scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greengard, S.: Following the crowd. Communications of the ACM 54, 20–22 (2011)Google Scholar
  2. 2.
    Mea, V.D., Maddalena, E., Mizzaro, S.: Crowdsourcing to Mobile Users - A Study of the Role of Platforms and Tasks. In: Cheng, R., Sarma, A.D., Maniu, S., Senellart, P. (eds.) Proceedings of First VLDB Workshop on Databases and Crowdsouring (DBCrowd 2013). CEUR, vol. 1025, pp. 14–19 (2013)Google Scholar
  3. 3.
    Chatzimilioudis, G., Konstantinidis, A., Laoudias, C., Zeinalipour-Yazti, D.: Crowdsourcing with Smartphones. IEEE Internet Computing 16(5), 36–44 (2012)CrossRefGoogle Scholar
  4. 4.
    Chon, Y., Lane, N.D., Kim, Y., Zhao, F., Cha, H.: A Large-scale Study of Mobile Crowdsourcing with Smartphones for Urban Sensing Applications. In: UbiComp 2013 (2013)Google Scholar
  5. 5.
    Abecker, A., Braun, S., Kazakos, W., Zacharias, V.: Participatory Sensing for Nature Conservation and Environment Protection. In: 26th International Conference on Informatics for Environmental Protection (EnviroInfo 2012), Shaker, Aachen, pp. 393–401 (2012)Google Scholar
  6. 6.
    Goodchild, M.F.: Citizens as voluntary sensors: spatial data infrastructure in the world of Web 2.0. International Journal of Spatial Data Infrastructures Research 2, 24–32 (2007)Google Scholar
  7. 7.
    Sieber, R.: Public participation geographic information systems: A literature review and framework. Annals of the American Association of Geography 96(3), 491–507 (2006)CrossRefGoogle Scholar
  8. 8.
    Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, B.: Participatory sensing. In: Workshop on World-Sensor-Web (WSW 2006): Mobile Device Centric Sensor Networks and Applications, pp. 117–134 (October 2006)Google Scholar
  9. 9.
    Zhao, Y., Zhu, Q.: Evaluation on crowdsourcing research: Current status and future direction. Information Systems Frontiers, 1–18 (2012)Google Scholar
  10. 10.
    Brabham, D.C.: Crowdsourcing as a Model for Problem Solving - An Introduction and Cases. Convergence 14(1), 75–90 (2008)CrossRefGoogle Scholar
  11. 11.
    Estellés-Arolas, E., González-Ladrón-de-Guevara, F.: Towards an integrated crowdsourcing definition. Journal of Information Science 38(2), 189–200 (2012)CrossRefGoogle Scholar
  12. 12.
    Geiger, D., Seedorf, S., Schulze, T., Nickerson, R., Schader, M.: Managing the Crowd: Towards a Taxonomy of Crowdsourcing Processes. In: 17th Americas Conference on Information Systems, pp. 1–11 (2011)Google Scholar
  13. 13.
    Rouse, A.C.: A preliminary taxonomy of crowdsourcing. In: ACIS 2010, paper 76 (2010)Google Scholar
  14. 14.
    Schenk, E., Guittard, C.: Towards a characterization of crowdsourcing practices. Journal of Innovation Economics 1(7), 93–107 (2010)Google Scholar
  15. 15.
    Erickson, T.: Some Thoughts on a Framework for Crowdsourcing. In: Workshop on Crowdsourcing and Human Computation, CHI 2011, pp. 1–4 (2011)Google Scholar
  16. 16.
    Yuen, M.-C., King, I., Leung, K.-S.: A Survey of Crowdsourcing Systems. Privacy, security, risk and trust. In: IEEE 3rd Int. Conf. on Social Computing, pp. 766–773 (2011)Google Scholar
  17. 17.
    Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the World-Wide Web. Communications of the ACM 54, 86–96 (2011)CrossRefGoogle Scholar
  18. 18.
    Kazman, R., Chen, H.-M.: The metropolis model a new logic for development of crowdsourced systems. Communications of the ACM 52, 76–84 (2009)CrossRefGoogle Scholar
  19. 19.
    Malone, T.W., Laubacher, R., Dellarocas, C.: The collective intelligence genome. IEEE Engineering Management Review 38, 38–52 (2010)CrossRefGoogle Scholar
  20. 20.
    Hetmank, L.: Components and Functions of Crowdsourcing Systems – A Systematic Literature Review. In: 11th Int. Conf. on Wirtschaftsinformatik, Leipzig, pp. 55–69 (2013)Google Scholar
  21. 21.
    Estrin, D.: Participatory Sensing: Applications and Architecture. In: 8th ACM International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 3–4 (2010)Google Scholar
  22. 22.
    Tilak, S.: Real-World Deployments of Participatory Sensing Applications: Current Trends and Future Directions. ISRN Sensor Networks 2013, Article ID 583165 (2013)Google Scholar
  23. 23.
    Khorashadi, B., Das, S.M., Gupta, R.: Flexible architecture for location based crowdsourcing of contextual data. Patent US 8472980 B2 (2011)Google Scholar
  24. 24.
    Reddy, S., Estrin, D., Srivastava, M.: Recruitment Framework for Participatory Sensing Data Collections. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 138–155. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Yan, T., Marzilli, M., Holmes, R., Ganesan, D., Corner, M.: mCrowd - A Platform for Mobile Crowdsourcing. In: SenSys 2009, Berkeley, USA, pp. 347–348 (2009)Google Scholar
  26. 26.
    Lasnia, D., Bröring, A., Jirka, S., Remke, A.: Crowdsourcing Sensor Tasks to a Socio-Geographic Network. In: 13th AGILE Conf. on Geographic Information Science (2010)Google Scholar
  27. 27.
    Das, T., Mohan, P., Padmanabhan, V., Ramjee, R., Sharma, A.: PRISM: Platform for Remote Sensing Using Smartphones. In: 8th Int. ACM Conference on Mobile Systems, Applications, and Services (MobiSys 2010), San Francisco, California, USA (2010)Google Scholar
  28. 28.
    Luqman, F., Griss, M.: Overseer: A Mobile Context-Aware Collaboration and Task Management System for Disaster Response. In: 8th Int. Conf. on Creating, Connecting and Collaborating through Computing (2010)Google Scholar
  29. 29.
    Christin, D., Reinhardt, A., Kanhere, S., Hollick, M.: A survey on privacy in mobile participatory sensing applications. J. of Systems and Software 84(11), 1928–1946 (2011)CrossRefGoogle Scholar
  30. 30.
    de Cristofaro, E., Soriente, C.: PEPSI - Privacy-Enhanced Participatory Sensing Infrastructure. In: ACM Conf. on Wireless Network Security (WiSec 2011), pp. 23–28 (2011)Google Scholar
  31. 31.
    Ra, M., Liu, B., La Porta, T., Govindan, R.: Medusa: A Programming Framework for Crowd-Sensing Applications. In: 10th International Conference on Mobile Systems, Applications, and Services (MobiSys 2012), pp. 337–350 (2012)Google Scholar
  32. 32.
    Hupfer, S., Muller, M., Levy, S., Gruen, G., Sempere, A., Ross, S., Priedhorsky, R.: MoCoMapps: mobile collaborative map-based applications. In: Conf. on Computer Supported Cooperative Work (CSCW 2012), pp. 43–44. ACM, New York (2012)Google Scholar
  33. 33.
    Cornelius, C., Kapadia, A., Kotz, D., Peebles, D., Shin, M., Triandopoulos, N.: Anonysense: Privacyaware people-centric sensing. In: ACM MOBISYS, pp. 211–224 (2008)Google Scholar
  34. 34.
    Kitchenham, B.: Guidelines for performing Systematic Literature Reviews in Software Engineering. EBSE Technical Report, Keele University, Keel, UK (2007)Google Scholar
  35. 35.
    Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S.: Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology 51, 7–15 (2009)CrossRefGoogle Scholar
  36. 36.
    Gonzalez, A.L., Izidoro, D., Willrich, R., Santos, C.A.S.: OurMap: Representing Crowdsourced Annotations on Geospatial Coordinates as Linked Open Data. In: Antunes, P., Gerosa, M.A., Sylvester, A., Vassileva, J., de Vreede, G.-J. (eds.) CRIWG 2013. LNCS, vol. 8224, pp. 77–93. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  37. 37.
    Fraternali, P., Castelletti, A., Soncini-Sessa, R., Ruiz, C.V., Rizzoli, A.E.: Putting humans in the loop: Social computing for Water Resources Management. Environmental Modelling; Software 37, 68–77 (2012)CrossRefGoogle Scholar
  38. 38.
    Corney, J.R., Torres-Sánchez, C., Jagadeesan, A.P., Yan, X.T., Regli, W.C., Medellin, H.: Putting the crowd to work in a knowledge-based factory. Advanced Engineering Informatics 24, 243–250 (2010)CrossRefGoogle Scholar
  39. 39.
    Mashhadi, A.J., Capra, L.: Quality control for real-time ubiquitous crowdsourcing. In: 2nd International Workshop on Ubiquitous Crowdsouring, pp. 5–8. ACM, New York (2011)Google Scholar
  40. 40.
    Schall, D.: Expertise ranking using activity and contextual link measures. Data & Knowledge Engineering 71(1), 92–113 (2012)CrossRefGoogle Scholar
  41. 41.
    Blöschl, G., Montanari, A.: Climate change impacts - throwing the dice? Hydrological Processes 24(3), 374–381 (2010)Google Scholar
  42. 42.
    Hornemann, C., Rechenberg, J.: Was Sie über den vorsorgenden Hochwasserschutz wissen sollten. Umweltbundesamt, Dessau (2006)Google Scholar
  43. 43.
    Fuchs-Kittowski, F., Simroth, S., Himberger, S., Fischer, F.: A content platform for smartphone-based mobile augmented reality. In: Arndt, H.-K., Knetsch, G., Pillmann, W. (Hrsg.) 26th International Conference on Informatics for Environmental Protection (EnviroInfo 2012) – Part 1: Core Application Areas, pp. 403–412. Shaker, Aachen (2012)Google Scholar
  44. 44.
    Europäische Gemeinschaft: Richtlinie 2007/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2007 über die Bewertung und das Management von Hochwasserrisiken. ABl. L 288 vom 06.11.2007 (2007)Google Scholar
  45. 45.
    Meissen, U., Faust, F., Fuchs-Kittowski, F.: WIND - A meteorological early warning system and its extensions towards mobile devices. In: Page, B., et al. (Hrsg.) 27th Int. Conf. on Environmental Informatics (EnviroInfo 2013), pp. 612–619. Shaker, Aachen (2013)Google Scholar
  46. 46.
    Thuan, N.H., Antunes, P., Johnstone, D.: Factors Influencing the Decision to Crowdsource. In: Antunes, P., Gerosa, M.A., Sylvester, A., Vassileva, J., de Vreede, G.-J. (eds.) CRIWG 2013. LNCS, vol. 8224, pp. 110–125. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  47. 47.
    Jordan, L., Stallins, A., Stokes, S., Johnson, E., Gragg, R.: Citizen Mapping and Environmental Justice: Internet Applications for Research and Advocacy. Environmental Justice 4(3), 155–162 (2011)CrossRefGoogle Scholar
  48. 48.
    Thogersen, R.: Data Quality in an Output-Agreement Game: A Comparison between Game-Generated Tags and Professional Descriptors. In: Antunes, P., Gerosa, M.A., Sylvester, A., Vassileva, J., de Vreede, G.-J. (eds.) CRIWG 2013. LNCS, vol. 8224, pp. 126–142. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  49. 49.
    de Vreede, T., Nguyen, C., de Vreede, G.-J., Boughzala, I., Oh, O., Reiter-Palmon, R.: A Theoretical Model of User Engagement in Crowdsourcing. In: Antunes, P., Gerosa, M.A., Sylvester, A., Vassileva, J., de Vreede, G.-J. (eds.) CRIWG 2013. LNCS, vol. 8224, pp. 94–109. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  50. 50.
    Liu, C.H., Hui, P., Branch, J.W., Bisdikian, C., Yang, B.: Efficient network management for context-aware participatory sensing. In: 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 116–124 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Frank Fuchs-Kittowski
    • 1
    • 2
  • Daniel Faust
    • 2
  1. 1.Hochschule für Technik und Wirtschaft (HTW)BerlinGermany
  2. 2.Fraunhofer Institute for Open Communication Systems (FOKUS)BerlinGermany

Personalised recommendations