Interval OLAP: Analyzing Interval Data

  • Christian Koncilia
  • Tadeusz Morzy
  • Robert Wrembel
  • Johann Eder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8646)


The ability to analyze data organized as sequences of events or intervals became important by nowadays applications since such data became ubiquitous. In this paper we propose a formal model and briefly discuss a prototypical implementation for processing interval data in an OLAP style. The fundamental constructs of the formal model include: events, intervals, sequences of intervals, dimensions, dimension hierarchies, a dimension members, and an iCube. The model supports: (1) defining multiple sets of intervals over sequential data, (2) defining measures computed from both, events and intervals, and (3) analyzing the measures in the context set up by dimensions.


Query Language Interval Data Interval Sequence Navigation Path Consecutive Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Retr. March 31, 2014,
  2. 2.
  3. 3.
    Bębel, B., Morzy, M., Morzy, T., Królikowski, Z., Wrembel, R.: OLAP-like analysis of time point-based sequential data. In: Castano, S., Vassiliadis, P., Lakshmanan, L.V.S., Lee, M.L. (eds.) ER 2012 Workshops 2012. LNCS, vol. 7518, pp. 153–161. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Chui, C.K., Kao, B., Lo, E., Cheung, D.: S-OLAP: an olap system for analyzing sequence data. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data, pp. 1131–1134. ACM (2010)Google Scholar
  5. 5.
    Chui, C.K., Lo, E., Kao, B., Ho, W.-S.: Supporting ranking pattern-based aggregate queries in sequence data cubes. In: Proc. of ACM Conf. on Information and Knowledge Management (CIKM), pp. 997–1006. ACM (2009)Google Scholar
  6. 6.
    Gonzalez, H., Han, J., Li, X.: FlowCube: constructing RFID flowcubes for multi-dimensional analysis of commodity flows. In: Proc. of Int. Conf. on Very Large Data Bases (VLDB), pp. 834–845. VLDB Endowment (2006)Google Scholar
  7. 7.
    Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing and analyzing massive RFID data sets. In: Proc. of Int. Conf. on Data Engineering (ICDE) (2006)Google Scholar
  8. 8.
    Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Trans. on Database Systems (TODS) 25(1), 1–42 (2000)CrossRefGoogle Scholar
  9. 9.
    Han, J., Chen, Y., Dong, G., Pei, J., Wah, B.W., Wang, J., Cai, Y.D.: Stream Cube: An architecture for multi-dimensional analysis of data streams. Distributed and Parallel Databases 18(2), 173–197 (2005)CrossRefGoogle Scholar
  10. 10.
    Liu, M., Rundensteiner, E., Greenfield, K., Gupta, C., Wang, S., Ari, I., Mehta, A.: E-Cube: multi-dimensional event sequence analysis using hierarchical pattern query sharing. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data, pp. 889–900. ACM (2011)Google Scholar
  11. 11.
    Liu, M., Rundensteiner, E.A.: Event sequence processing: new models and optimization techniques. In: Proc. of SIGMOD PhD Workshop on Innovative Database Research (IDAR), pp. 7–12 (2010)Google Scholar
  12. 12.
    Lo, E., Kao, B., Ho, W.-S., Lee, S.D., Chui, C.K., Cheung, D.W.: OLAP on sequence data. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data, pp. 649–660 (2008)Google Scholar
  13. 13.
    Mörchen, F.: Unsupervised pattern mining from symbolic temporal data. SIGKDD Explor. Newsl. 9(1), 41–55 (2007)CrossRefGoogle Scholar
  14. 14.
    Thiagarajan, A., Madden, S.: Querying continuous functions in a database system. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data, pp. 791–804 (2008)Google Scholar
  15. 15.
    Witkowski, A.: Analyze this! Analytical power in SQL, more than you ever dreamt of. Oracle Open World (2012)Google Scholar
  16. 16.
    Ya-Han, H., Tony Cheng-Kui, H., Hui-Ru, Y., Yen-Liang, C.: On mining multi-time-interval sequential patterns. Data & Knowledge Engineering 68(10), 1112–1127 (2009)CrossRefGoogle Scholar
  17. 17.
    Yen-Liang, C., Mei-Ching, C., Ming-Tat, K.: Discovering time-interval sequential patterns in sequence databases. Expert Systems with Applications 25(3), 343–354 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christian Koncilia
    • 1
  • Tadeusz Morzy
    • 2
  • Robert Wrembel
    • 2
  • Johann Eder
    • 1
  1. 1.Institute of Informatics SystemsKlagenfurt UniversityKlagenfurtAustria
  2. 2.Institute of Computing SciencePoznan University of TechnologyPoznańPoland

Personalised recommendations