A Proof-Theoretic Analysis of Theories for Stratified Inductive Definitions

Abstract

In this article we study subsystems SIDν of the theory ID1 in which fixed point induction is restricted to properly stratified formulas.

References

  1. 1.
    P. Aczel, A new approach to the Bachmann method for describing large countable ordinals. Unpublished notes (1970)Google Scholar
  2. 2.
    P. Aczel, The strength of Martin-Löf’s intuitionistic type theory with one universe. Unpublished notes (1976)Google Scholar
  3. 3.
    B. Afshari, M. Rathjen, A note on the theory of positive induction, ID 1 . Arch. Math. Log. 49(2), 275–281 (2010)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    W. Buchholz, Normalfunktionen und konstruktive Systeme von Ordinalzahlen, in Proof Theory Symposion Kiel 1974, ed. by J. Diller, G.H. Müller. Lecture Notes in Mathematics, vol. 500 (Springer, Berlin, 1975), pp. 4–25Google Scholar
  5. 5.
    W. Buchholz, A simplified version of local predicativity, in Proof Theory, ed. by P. Aczel, H. Simmons, S.S. Wainer (Cambridge University Press, New York, 1992), pp. 115–147Google Scholar
  6. 6.
    W. Buchholz, Prädikative Beweistheorie. Vorlesungsskript (Universität München, München, 2004/2005)Google Scholar
  7. 7.
    W. Buchholz, S. Feferman, W. Pohlers, W. Sieg, Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies. Lecture Notes in Mathematics, vol. 897 (Springer, Berlin, 1981)Google Scholar
  8. 8.
    A. Cantini, Logical Frameworks for Truth and Abstraction. An Axiomatic Study. Studies in Logic and the Foundations of Mathematics, vol. 135 (Elsevier, North-Holland, 1996)Google Scholar
  9. 9.
    S. Feferman, Iterated inductive fixed-point theories: application to Hancock’s conjecture, in The Patras Symposion, ed. by G. Metakides (Elsevier, North-Holland, 1982), pp. 171–196CrossRefGoogle Scholar
  10. 10.
    H. Friedman, Theories of inductive definition. Unpublished notes (1969)Google Scholar
  11. 11.
    G. Jäger, Theories for Admissible Sets: A Unifying Approach to Proof Theory. Studies in Proof Theory, Lecture Notes, vol. 2 (Bibliopolis, 1986)Google Scholar
  12. 12.
    G. Jäger, T. Strahm, Upper bounds for metapredicative Mahlo in explicit mathematics and admissible set theory. J Symb. Log. 66(2), 935–958 (2001)MATHCrossRefGoogle Scholar
  13. 13.
    G. Jäger, R. Kahle, A. Setzer, T. Strahm, The proof-theoretic analysis of transfinitely iterated fixed point theories. J. Symb. Log. 64(1), 53–67 (1999)MATHCrossRefGoogle Scholar
  14. 14.
    D. Leivant, Peano Theories and the Formalization of Feasible Mathematics. Extended summary ( Indiana University, Bloomington, 1993)Google Scholar
  15. 15.
    D. Leivant, Intrinsic theories and computational complexity, in Logic and Computational Complexity, ed. by D. Leivant. Lecture Notes in Computer Science, vol. 960 (Springer, Berlin, 1995), pp. 177–194Google Scholar
  16. 16.
    W. Pohlers, Proof Theory. An Introduction. Lecture Notes in Mathematics, vol. 1407 (Springer, Berlin, 1989)Google Scholar
  17. 17.
    D. Probst, The proof-theoretic analysis of transfinitely iterated quasi least fixed points. J. Symb. Log. 71(3), 721–746 (2006)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    F. Ranzi, T. Strahm, A note on the theory SID  < ω of stratified induction. Math. Log. Q. 60(6), 487–497 (2014)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Rathjen, Admissible proof theory and beyond, in Logic, Methodology and Philosophy of Science - Proceedings of the Ninth International Congress, ed. by D. Prawitz, B. Skyrms, D. Westerstahl. Studies in Logic and the Foundations of Mathematics, vol. 134 (Elsevier, Amsterdam, 1994), pp. 123–147Google Scholar
  20. 20.
    K. Schütte, Kennzeichnung von ordnungszahlen durch rekursiv erklärte funktionen. Math. Ann. 127, 15–32 (1954)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    K. Schütte, Proof Theory. Grundlehren der mathematischen Wissenschaften, vol. 225 (Springer, Berlin, 1977)Google Scholar
  22. 22.
    S.S. Wainer, R.S. Williams, Inductive definitions over a predicative arithmetic. Ann. Pure Appl. Log. 136(1–2), 175–188 (2005)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für Informatik und angewandte MathematikUniversität BernBernSwitzerland

Personalised recommendations