Gentzen’s Consistency Proof in Context

Abstract

Gentzen’s celebrated consistency proof—or proofs, to distinguish the different variations he gave1—of Peano Arithmetic in terms of transfinite induction up to the ordinal2\(\varepsilon _{0}\) can be considered as the birth of modern proof theory.

References

  1. 1.
    W. Ackermann, Letter to David Hilbert, August 23rd, 1933, Niedersächsische Staats- und Universitätsbibliothek Göttingen, Cod. Ms. D. Hilbert 1.Google Scholar
  2. 2.
    W. Ackermann, Zur Widerspruchsfreiheit der Zahlentheorie. Math. Ann. 117, 162–194 (1940)MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Aczel, Frege structures and the notion of proposition, truth and set, in The Kleene Symposium, ed. by J. Barwise, H. Keisler, K. Kunen (North-Holland, Amsterdam, 1980), pp. 31–59CrossRefGoogle Scholar
  4. 4.
    T. Arai, Epsilon substitution method for \(\text{ID}_{1}(\Pi _{1}^{0} \vee \Sigma _{1}^{0})\). Ann. Pure Appl. Log. 121, 163–208 (2003)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    T. Arai, Proof theory for theories of ordinals I: recursively Mahlo ordinals. Ann. Pure Appl. Log. 122, 1–85 (2003)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    T. Arai, Proof theory for theories of ordinals II:\(\Pi _{3}\)-reflection. Ann. Pure Appl. Log. 129, 39–92 (2004)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Arai, Proof theory for theories of ordinals III: \(\Pi _{N}\)-reflection, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  8. 8.
    J. Avigad, S. Feferman, Gödel’s functional (“Dialectica”) interpretation, in Handbook of Proof Theory, ed. by S.R. Buss (North-Holland, Amsterdam, 1998), pp. 337–405CrossRefGoogle Scholar
  9. 9.
    P. Benacerraf, H. Putnam (eds.), Philosophy of Mathematics. Selected Readings (Prentice Hall, Englewood Cliffs, 1964) (2nd edn., Cambridge University Press, Cambridge, 1983)Google Scholar
  10. 10.
    P. Bernays, Hilberts Untersuchungen über die Grundlagen der Arithmetik, in David Hilbert: Gesammelte Abhandlungen, vol. 3, [51] (Springer, Berlin, 1935), pp. 196–216Google Scholar
  11. 11.
    P. Bernays, Hilbert, David, in Encyclopedia of Philosophy, vol. 3, ed. by P. Edwards (Macmillan, New York, 1967), pp. 496–504Google Scholar
  12. 12.
    N. Bourbaki, Foundations of mathematics for the working mathematician. J. Symb. Log. 14(1), 1–8 (1949)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    W. Buchholz, On Gentzen’s first consistency proof for arithmetic, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  14. 14.
    W. Buchholz, S. Feferman, W. Pohlers, W. Sieg, Iterated Inductive Definitions and Subsystems of Analysis. Lecture Notes in Mathematics, vol. 897 (Springer, Berlin, 1981)Google Scholar
  15. 15.
    S. Buss, Cut elimination In Situ, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  16. 16.
    G. Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, ed. by E. Zermelo (Springer, Berlin, 1932)Google Scholar
  17. 17.
    G. Cantor, Briefe, ed. by H. Meschkowski, W. Nilson (Springer, Berlin, 1991)Google Scholar
  18. 18.
    J.W. Dawson Jr., The reception of Gödel’s incompleteness theorems, in Gödel’s Theorem in Focus, ed. by S.G. Shanker (Routledge, London, 1988), pp. 74–95Google Scholar
  19. 19.
    M. Detlefsen, Gentzen’s anti-formalist views, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  20. 20.
    H.-D. Ebbinghaus et al., Numbers. Graduate Texts in Mathematics (Springer, Berlin, 1991)Google Scholar
  21. 21.
    L. Euler, Vollständige Anleitung zur Algebra. (Akademie der Wissenschaften, St. Petersburg, 1770). Two volumes.Google Scholar
  22. 22.
    W.B. Ewald (ed.), From Kant to Hilbert. (Oxford University Press, Oxford, 1996). Two volumes.Google Scholar
  23. 23.
    S. Feferman, Does reductive proof theory have a viable rationale? Erkenntnis 53, 63–96 (2000)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Feferman, Lieber Herr Bernays! Lieber Herr Gödel! Gödel on finitism, constructivity, and Hilbert’s program, in Kurt Gödel and the Foundations of Mathematics, ed. by M. Baaz et al. (Cambridge University Press, Cambridge, 2011), pp. 111–133CrossRefGoogle Scholar
  25. 25.
    S. Feferman, H.M. Friedman, P. Maddy, J.R. Steel, Does mathematics need new axioms? Bull. Symb. Log. 6(4), 401–446 (2000)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    F. Ferreira, Spector’s proof of the consistency of analysis, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  27. 27.
    F. Ferreira, A. Nunes, Bounded modified realizability. J. Symb. Log. 71(1), 329–346 (2006)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Fraenkel, Zehn Vorlesungen über die Grundlegung der Mengenlehre. Wissenschaft und Hypothese, vol. XXXI (Teubner, Leipzig, 1927). Reprint (Wissenschaftliche Buchgesellschaft, Darmstadt, 1972)Google Scholar
  29. 29.
    G. Frege, Grundgesetze der Arithmetik, vol. 1 (Hermann Pohle, Jena, 1893). Reprinted, together with vol. 2 (Olms, Hildesheim 1966)Google Scholar
  30. 30.
    G. Frege, Grundgesetze der Arithmetik, vol. 2 (Hermann Pohle, Jena, 1903). Reprinted, together with vol. 1 (Olms, Hildesheim 1966)Google Scholar
  31. 31.
    G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie. Math. Ann. 112, 493–565 (1936). English translation in [102, #4]Google Scholar
  32. 32.
    G. Gentzen, Die gegenwärtige Lage in der mathematischen Grundlagenforschung. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, Neue Folge 4, 5–18 (1938); also in Dtsch. Math. 3, 255–268 (1939). English translation in [102, #7]Google Scholar
  33. 33.
    G. Gentzen, Über das Verhältnis zwischen intuitionistischer und klassischer Arithmetik. Archiv für mathematische Logik und Grundlagenforschung 16, 119–132 (1974). Written in 1933, but withdrawn from publication after the appearence of [37]. English translation in [102, #2]Google Scholar
  34. 34.
    J.-Y. Girard, Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur, PhD thesis, Université Paris 7, 1972Google Scholar
  35. 35.
    J.-Y. Girard, Du pourquoi au comment: la théorie de la démonstration de 1950 à nos jours, in Development of Mathematics, 1950–2000, ed. by J.-P. Pier (Birkhäuser, Basel, 2000),pp. 515–545Google Scholar
  36. 36.
    J.-Y. Girard, The Blind Spot. (European Mathematical Society, Zürich, 2011)Google Scholar
  37. 37.
    K. Gödel, Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines mathematischen Kolloquiums 4, 34–38 (1933). Translated as On intuitionistic arithmetic and number theory in [113], reprinted in [40] (1933e), pp. 287–295Google Scholar
  38. 38.
    K. Gödel, Vortrag bei Zilsel/Lecture at Zilsel’s, 1938. Published in [42] (*1938a), pp. 86–113Google Scholar
  39. 39.
    K. Gödel, Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958). Reprinted with English translation in [41], pp. 241–251Google Scholar
  40. 40.
    K. Gödel, Collected Works, vol. I, ed. by S. Feferman et al. (Oxford University Press, Oxford, 1986)Google Scholar
  41. 41.
    K. Gödel, Collected Works, vol. II, ed. by S. Feferman et al. (Oxford University Press, Oxford, 1990)Google Scholar
  42. 42.
    K. Gödel, Collected Works: Unpublished Essays and Lectures, vol. III, ed. by S. Feferman et al. (Oxford University Press, Oxford, 1995)Google Scholar
  43. 43.
    J. Gray, Henri Poincaré (Princeton University Press, Princeton, 2013)MATHGoogle Scholar
  44. 44.
    M. Hallett. Cantorian Set Theory and Limitation of Size. Oxford Logic Guides, vol. 10 (Oxford University Press, Oxford, 1984)Google Scholar
  45. 45.
    D. Hilbert, Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900. Nachrichten von der königl. Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse, pages 53–297, 1900. English translation: [46]Google Scholar
  46. 46.
    D. Hilbert, Mathematical Problems. Lecture Delivered Before the International Congress of Mathematicians at Paris in 1900. Bull. Am. Math. Soc. 8, 437–479 (1902). English translation of [45]Google Scholar
  47. 47.
    D. Hilbert, Über die Grundlagen der Logik und der Arithmetik, in Verhandlungen des Dritten Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904, ed. by A. Krazer (Teubner, Leipzig, 1905), pp. 174–185Google Scholar
  48. 48.
    D. Hilbert, Mengenlehre. Lecture Notes Summer term 1917, (Library of the Mathematical Institute, University of Göttingen), 1917Google Scholar
  49. 49.
    D. Hilbert, Neubegründung der Mathematik: Erste Mitteilung. Abhandlungen aus dem Seminar der Hamburgischen Universität 1, 157–177 (1922)MATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    D. Hilbert, Die Grundlagen der Mathematik. Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität 6(1/2), 65–85 (1928)MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    D. Hilbert, Gesammelte Abhandlungen. Analysis, Grundlagen der Mathematik, Physik, Verschiedenes, Lebensgeschichte, vol. III (Springer, Berlin, 1935). 2nd edition 1970Google Scholar
  52. 52.
    D. Hilbert, P. Bernays, Grundlagen der Mathematik I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 40 (Springer, Berlin, 1934). 2nd edn. 1968. Partly translated into English in the bilingual edition [55]Google Scholar
  53. 53.
    D. Hilbert, P. Bernays, Grundlagen der Mathematik II. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 50 (Springer, Berlin, 1939). 2nd edition [54]Google Scholar
  54. 54.
    D. Hilbert, P. Bernays, Grundlagen der Mathematik II. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 50, 2nd edn. (Springer, Berlin, 1970). 1st edition [53].Google Scholar
  55. 55.
    D. Hilbert, P. Bernays, Grundlagen der Mathematik I (Foundations of Mathematics I). (College Publications, London, 2011). Bilingual edition of Prefaces and §§1–2 of [52]Google Scholar
  56. 56.
    G. Jäger, Theories for Admissible Sets: A Unifying Approach to Proof Theory. (Bibliopolis, Naples, 1986)Google Scholar
  57. 57.
    G. Jäger, D. Probst, A proof-theoretic analysis of theories for stratified inductive definitions, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  58. 58.
    H. Jervell, Climbing mount \(\varepsilon _{0}\), in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  59. 59.
    R. Kahle, David Hilbert über Paradoxien. Departamento de Matemática, Universidade de Coimbra. Preprint Number 06-17(2006)Google Scholar
  60. 60.
    R. Kahle, The universal set—A (never fought) battle between philosophy and mathematics, in Lógica e Filosofia da Ciência, ed. by O. Pombo, Á. Nepomuceno. Colecção Documenta, vol. 2 (Centro de Filosofia das Ciências da Universidade de Lisboa, Lisboa, 2009), pp. 53–65Google Scholar
  61. 61.
    R. Kahle, Hilbert and Poincaré and the paradoxes, in Poincaré’s Philosophy of Mathematics: Intuition, Experience, Creativity, ed. by H. Tahiri. Cadernos de Filosofia das Ciências, vol. 11 (Centro de Filosofia das Ciências da Universidade de Lisboa, Lisboa, 2011), pages 79–93Google Scholar
  62. 62.
    R. Kahle, Poincaré in Göttingen, in Poincaré: Philosopher of Science, Problems and Perspectives, ed. by M. de Paz, R. DiSalle. The Western Ontario Series in the Philosophy of Science, vol. 79 (Springer, Berlin, 2014), pp. 83–99Google Scholar
  63. 63.
    A. Kanamori, The Higher Infinite, 2nd edn. (Springer, Berlin, 2003). 1st edition 1994Google Scholar
  64. 64.
    U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics. (Springer, Berlin, 2008)Google Scholar
  65. 65.
    A.N. Kolmogorov, O principe tertium non datur. Matematicheskij Sbornik 32, 646–667 (1925). Reprinted in English translation as On the principle of the excluded middle in [113, p. 414–447]Google Scholar
  66. 66.
    G. Kreisel, Hilbert’s programme. Dialectica 12, 346–372 (1958). Reprinted in [9, pp. 207–238 of the second edition]Google Scholar
  67. 67.
    G. Kreisel, A survey of proof theory. J. Symb. Log. 33(3), 321–388 (1968)MATHMathSciNetCrossRefGoogle Scholar
  68. 68.
    G. Kreisel, Formal rules and questions of justifying mathematical practice, in Konstruktionen versus Positionen, ed, by K. Lorenz. vol. 1: Spezielle Wissenschaftslehre (de Gruyter, Berlin, 1979), pp. 99–130Google Scholar
  69. 69.
    G. Kreisel et al., Reports of Seminar on the Foundations of Analysis (“Stanford report”). Technical report, Stanford University, Summer 1963Google Scholar
  70. 70.
    P. Lorenzen, Logik und Agon, in Atti del XII Congresso Internazionale di Filosofia, vol. 4 (Sansoni, Firenze, 1960), pp. 187–194. Reprinted in [71]Google Scholar
  71. 71.
    P. Lorenzen, K. Lorenz, Dialogische Logik (Wissenschaftliche Buchgesellschaft, Darmstadt, 1978)MATHGoogle Scholar
  72. 72.
    A. Macintyre, The mathematical significance of proof theory. Philos. Trans. R. Soc. A 363, 2419–2435 (2005)MATHMathSciNetCrossRefGoogle Scholar
  73. 73.
    P. Maddy, Naturalism in Mathematics (Clarendon Press, Oxford, 1997)MATHGoogle Scholar
  74. 74.
    C. McLarty, What does it take to prove Fermat’s last theorem? Grothendieck and the logic of number theory. Bull. Symb. Log. 16(3), 359–377 (2010)MATHMathSciNetCrossRefGoogle Scholar
  75. 75.
    F. Meskens, A. Weiermann, Classifying phase transition thresholds for Goodstein sequences and Hydra games, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  76. 76.
    G. Mints, Gentzen-type systems and Hilbert’s epsilon substitution method. I, in Logic, Methodology, and Philosophy of Science IX, ed. by D. Prawitz, B. Skyrms, D. Westerstahl (Elsevier, Amsterdam, 1994), pp. 91–122Google Scholar
  77. 77.
    G. Mints, Non-deterministic epsilon substitution method for PA and ID1, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  78. 78.
    G. Mints, S. Tupailo, W. Buchholz, Epsilon substitution method for elementary analysis. Arch. Math. Log. 35, 103–130 (1996)MATHMathSciNetCrossRefGoogle Scholar
  79. 79.
    S. Negri, J. von Plato, Structural Proof Theory (Cambridge University Press, Cambridge, 2001)MATHCrossRefGoogle Scholar
  80. 80.
    P. Oliva, T. Powell, A game-theoretic computational interpretation of proofs in classical analysis, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  81. 81.
    W. Pohlers, Subsystems of set theory and second order number theory, in Handbook of Proof Theory, ed. by S.R. Buss. Studies in Logic and Foundations of Mathematics, vol. 137 (Elsevier, Amsterdam, 1998), pp. 209–335Google Scholar
  82. 82.
    W. Pohlers, Proof Theory. Universitext (Springer, Berlin, 2009)MATHGoogle Scholar
  83. 83.
    W. Pohlers, Semi-formal calculi and their applications, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  84. 84.
    H. Poincaré, Les mathématiques et la logique. Revue de métaphysique et de morale 14, 294–317 (1906). Translated in [22, vol. 2, pp. 1052–1071]Google Scholar
  85. 85.
    H. Poincaré, Sechs Vorträge über ausgewählte Gegenstände aus der reinen Mathematik und mathematischen Physik (Teubner, Leipzig, 1910)Google Scholar
  86. 86.
    D. Prawitz, Hauptsatz for higher order logic. J. Symb. Log. 33, 452–457 (1968)MATHMathSciNetCrossRefGoogle Scholar
  87. 87.
    D. Prawitz, Extending Gentzen’s 2nd consistency proof to normalization of natural deductions in 1st order arithmetic, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  88. 88.
    M. Rathjen, Ordinal analysis of parameter free \(\Pi _{2}^{1}\)-comprehension. Arch. Math. Log. 44(3), 263–362 (2005)MATHMathSciNetCrossRefGoogle Scholar
  89. 89.
    M. Rathjen, An ordinal analysis of stability. Arch. Math. Log. 44(1), 1–62 (2005)MATHMathSciNetCrossRefGoogle Scholar
  90. 90.
    M. Rathjen, Goodstein’s theorem revisited, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  91. 91.
    M. Rathjen, P.F.V. Vizcaíno, Well ordering principles and bar induction, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  92. 92.
    C. Reid, Hilbert (Springer, Berlin, 1970)MATHCrossRefGoogle Scholar
  93. 93.
    K. Schütte, Syntactical and semantical properties of simple type theory. J. Symb. Log. 25, 303–326 (1960)Google Scholar
  94. 94.
    K. Schütte, Proof Theory (Springer, Berlin, 1977)MATHCrossRefGoogle Scholar
  95. 95.
    A. Setzer, The use of trustworthy principles in a revised Hilbert’s program, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  96. 96.
    J.R. Shoenfield, Mathematical Logic. (Addison-Wesley, Reading, 1967). Reprinted Association for Symbolic Logic and AK Peters, 2001Google Scholar
  97. 97.
    A. Siders, A direct Gentzen-style consistency proof for Heyting arithmetic, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  98. 98.
    W. Sieg, Hilbert’s programs: 1917–1922. Bull. Symb. Log. 5(1), 1–44 (1999)MATHMathSciNetCrossRefGoogle Scholar
  99. 99.
    S.G. Simpson, Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in Logic (Association for Symbolic Logic and Cambridge University Press, New York, 2009)Google Scholar
  100. 100.
    R. Smullyan, Gödel’s Incompleteness Theorems. Oxford Logic Guides, vol. 19. (Oxford University Press, New York, 1992)Google Scholar
  101. 101.
    C. Spector, Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles in current intuitionistic mathematics, in Recursive Function Theory, ed. by F.D.E. Dekker. Proceedings of Symposia in Pure Mathematics, vol. 5 (American Mathematical Society, Providence, 1962), pp. 1–27Google Scholar
  102. 102.
    M.E. Szabo, The Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundations of Mathematics (North-Holland, Amsterdam, 1969)Google Scholar
  103. 103.
    W.W. Tait, A non constructive proof of Gentzen’s Hauptsatz for second order predicate logic. Bull. Am. Math. Soc. 72, 980–983 (1966)MATHMathSciNetCrossRefGoogle Scholar
  104. 104.
    W.W. Tait, Finitism. J. Philos. 78, 524–546 (1981)CrossRefGoogle Scholar
  105. 105.
    W.W. Tait, Gentzen’s original consistency proof and the bar theorem, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  106. 106.
    M. Takahashi, A proof of cut-elimination in simple type theory. J. Math. Soc. Jpn. 19, 399–410 (1967)MATHCrossRefGoogle Scholar
  107. 107.
    G. Takeuti, On a generalized logic calculus. Jpn. J. Math. 23, 39–96 (1953)MATHMathSciNetGoogle Scholar
  108. 108.
    G. Takeuti, Proof Theory, 2nd edn. (North-Holland, Amsterdam, 1987)MATHGoogle Scholar
  109. 109.
    A. Tarski, Contribution to the discussion of P. Bernays ‘Zur Beurteilung der Situation in der beweistheoretischen Forschung’. Revue internationale de philosophie 8, 16–20 (1954). Reprinted in [110, pp. 711–714]Google Scholar
  110. 110.
    A. Tarski, Collected Papers, vol. IV (Birkhäuser, Basel, 1986)MATHGoogle Scholar
  111. 111.
    A.S. Troelstra, H. Schwichtenberg, Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science, vol. 43, 2nd edn. (Cambridge University Press, Cambridge, 2000)Google Scholar
  112. 112.
    D. van Dalen, Brouwer and Fraenkel on intuitionism. Bull. Symb. Log. 6(3), 284–310 (2000)MATHCrossRefGoogle Scholar
  113. 113.
    J. van Heijenoort (ed.) From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. (Harvard University Press, Cambridge, 1967)MATHGoogle Scholar
  114. 114.
    J. von Plato, From Hauptsatz to Hilfssatz, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)Google Scholar
  115. 115.
    J. von Plato (ed.)Saved from the Cellar. Gerhard Gentzen’s Shorthand Notes on Logic and Foundations of Mathematics. to appear, 201xGoogle Scholar
  116. 116.
    H. Wang, Some facts about Kurt Gödel. J. Symb. Log. 46(3), 653–659 (1981)MATHCrossRefGoogle Scholar
  117. 117.
    H. Weyl, Das Kontinuum. (Veit, Leipzig, 1918). English translation: [118]Google Scholar
  118. 118.
    H. Weyl, The Continuum: A Critical Examination of the Foundation of Analysis. (Thomas Jefferson University Press, 1987), (Corrected re-publication, Dover 1994). English translation of [117].Google Scholar
  119. 119.
    W.H. Woodin, The transfinite universe, in Kurt Gödel and the Foundations of Mathematics, ed. by M. Baaz et al. (Cambridge University Press, New York, 2011), pp. 449–471CrossRefGoogle Scholar
  120. 120.
    M. Yasugi, N. Passell (eds.) Memoirs of a Proof Theorist (World Scientific, Singapore, 2003). English translation of a collection of essays written by Gaisi TakeutiGoogle Scholar
  121. 121.
    E. Zermelo, Untersuchungen über die Grundlagen der Mengenlehre I. Math. Ann. 65, 261–281 (1908)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CMA, CENTRIA, and DM, FCTUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations