Efficient R-Tree Based Indexing for Cloud Storage System with Dual-Port Servers

  • Fan Li
  • Wanchao Liang
  • Xiaofeng Gao
  • Bin Yao
  • Guihai Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8645)


Cloud storage system such as Amazon’s Dynamo and Google’s GFS poses new challenges to the community to support efficient query processing for various applications. In this paper we propose RT-HCN, a distributed indexing scheme for multi-dimensional query processing in data centers, the infrastructure to build cloud systems. RT-HCN is a two-layer indexing scheme, which integrates HCN-based routing protocol and the R-Tree based indexing technology, and is portionably distributed on every server. Based on the characteristics of HCN, we design a special index publishing rule and query processing algorithms to guarantee efficient data management for the whole network. We prove theoretically that RT-HCN is both query-efficient and space-efficient, by which each server will only maintain a tolerable number of indices while a large number of users can concurrently process queries with low routing cost. We compare our design with RT-CAN, a similar design in traditional P2P network. Experiments validate the efficiency of our proposed scheme and depict its potential implementation in data centers.


Distributed Index R-Tree Data Center Network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. ACM SIGOPS 37(5), 29–43 (2003)Google Scholar
  2. 2.
    DeCandia, G., Hastorun, D., Jampani, M., et al.: Dynamo: amazon’s highly available key-value store. ACM SIGOPS 41(6), 205–220 (2007)Google Scholar
  3. 3.
    Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM SIGOPS 44(2), 35–40 (2010)Google Scholar
  4. 4.
    Beaver, D., Kumar, S., Li, H.C., et al.: Finding a Needle in Haystack: Facebook’s Photo Storage. In: USENIX OSDI, pp. 47–60 (2010)Google Scholar
  5. 5.
    Baker, J., Bond, C., Corbett, J.C., et al.: Megastore: Providing Scalable, Highly Available Storage for Interactive Services. ACM CIDR 11, 223–234 (2011)Google Scholar
  6. 6.
    Corbett, J.C., Dean, J., Epstein, M., et al.: Spanner: Google’s globally-distributed database. ACM TOCS 31(3), 8 (2013)CrossRefGoogle Scholar
  7. 7.
    Wang, J., Wu, S., Gao, H., et al.: Indexing multi-dimensional data in a cloud system. In: ACM SIGMOD, pp. 591–602 (2010)Google Scholar
  8. 8.
    Wu, S., Wu, K.-L.: An Indexing Framework for Efficient Retrieval on the Cloud. Bulletin of TCDE of the IEEE Computer Society 32(1), 75–82 (2009)Google Scholar
  9. 9.
    Wu, S., Jiang, D., Ooi, B.C., Wu, K.-L.: Efficient b-tree based indexing for cloud data processing. ACM VLDB 3(1-2), 1207–1218 (2010)Google Scholar
  10. 10.
    Chen, G., Vo, H.T., Wu, S., et al.: A Framework for Supporting DBMS-like Indexes in the Cloud. ACM VLDB 4(11), 702–713 (2011)Google Scholar
  11. 11.
    Jagadish, H.V., Ooi, B.C., Vu, Q.H.: Baton: A balanced tree structure for peer-to-peer networks. In: ACM VLDB, pp. 661–672 (2005)Google Scholar
  12. 12.
    Ratnasamy, S., Francis, P., Handley, M., et al.: A scalable content-addressable network. ACM SIGCOMM 31(4), 161–172 (2001)CrossRefGoogle Scholar
  13. 13.
    Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. ACM SIGCOMM 38(4), 63–74 (2008)CrossRefGoogle Scholar
  14. 14.
    Greenberg, A., Hamilton, J.R., Jain, N., et al.: VL2: a scalable and flexible data center network. ACM SIGCOMM 39(4), 51–62 (2009)CrossRefGoogle Scholar
  15. 15.
    Guo, C., Wu, H., Tan, K., et al.: Dcell: a scalable and fault-tolerant network structure for data centers. ACM SIGCOMM 38(4), 75–86 (2008)CrossRefGoogle Scholar
  16. 16.
    Guo, C., Lu, G., Li, D., et al.: BCube: a high performance, server-centric network architecture for modular data centers. ACM SIGCOMM 39(4), 63–74 (2009)CrossRefGoogle Scholar
  17. 17.
    Li, D., Guo, C., Wu, H., et al.: FiConn: Using backup port for server interconnection in data centers. In: IEEE INFOCOM, pp. 2276–2285 (2009)Google Scholar
  18. 18.
    Li, D., Guo, C., Wu, H., et al.: Scalable and cost-effective interconnection of data-center servers using dual server ports. IEEE/ACM TON 19(1), 102–114 (2011)CrossRefGoogle Scholar
  19. 19.
    Wu, H., Lu, G., Li, D., et al.: MDCube: a high performance network structure for modular data center interconnection. In: ACM CoNEXT, pp. 25–36 (2009)Google Scholar
  20. 20.
    Li, D., Xu, M., Zhao, H., Fu, X.: Building mega data center from heterogeneous containers. In: IEEE ICNP, pp. 256–265 (2011)Google Scholar
  21. 21.
    Guo, D., Chen, T., Li, D., et al.: BCN: expansible network structures for data centers using hierarchical compound graphs. In: IEEE INFOCOM, pp. 61–65 (2011)Google Scholar
  22. 22.
    Guo, D., Chen, T., Li, D., et al.: Expandable and cost-effective network structures for data centers using dual-port servers. IEEE Trans. Comp. 62(7), 1303–1317 (2013)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Antonin, G.: R-trees: A dynamic index structure for spatial searching. ACM SIGMOD 14(2), 47–57 (1984)CrossRefGoogle Scholar
  24. 24.
    Chang, F., Dean, J., Ghemawat, S., et al.: Bigtable: A distributed storage system for structured data. ACM TOCS 26(2), 4:1–4:26 (2008)Google Scholar
  25. 25.
    Weil, S.A., Brandt, S.A., Miller, E.L., et al.: Ceph: A scalable, high-performance distributed file system. In: USENIX OSDI, pp. 307–320 (2006)Google Scholar
  26. 26.
    Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: ACM STOC, pp. 380–388 (2002)Google Scholar
  27. 27.
    Sagan, H.: Space-filling curves. Springer, New York (1994)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fan Li
    • 1
  • Wanchao Liang
    • 1
  • Xiaofeng Gao
    • 1
  • Bin Yao
    • 1
  • Guihai Chen
    • 1
  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityP.R. China

Personalised recommendations