An Improved Method for Efficient PageRank Estimation

  • Yuta Sakakura
  • Yuto Yamaguchi
  • Toshiyuki Amagasa
  • Hiroyuki Kitagawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8645)


PageRank is a link analysis method to estimate the importance of nodes in a graph, and has been successfully applied in wide range of applications. However, its computational complexity is known to be high. Besides, in many applications, only a small number of nodes are of interest. To address this problem, several methods for estimating PageRank score of a target node without accessing whole graph have been proposed. In particular, Chen et al. proposed an approach where, given a target node, subgraph containing the target is induced to locally compute PageRank score. Nevertheless, its computation is still time consuming due to the fact that a number of iterative processes are required when constructing a subgraph for subsequent PageRank estimation. To make it more efficient, we propose an improved approach in which a subgraph is recursively expanded by solving a linear system without any iterative computation. To assess the efficiency of the proposed scheme, we conduct a set of experimental evaluations. The results reveal that our proposed scheme can estimate PageRank score more efficiently than the existing approach while maintaining the estimation accuracy.


PageRank Local Estimation Link Structure Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Preda, M., Cobena, G.: Adaptive on-line page importance computation. In: World Wide Web Conference Series, pp. 280–290 (2003)Google Scholar
  2. 2.
    Arasu, A., Novak, J., Tomkins, A., Tomlin, J.: PageRank Computation and the Structure of the Web: Experiments and Algorithms. In: World Wide Web Conference Series (2002)Google Scholar
  3. 3.
    Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-Based Keyword Search in Databases. In: Very Large Data Bases, pp. 564–575 (2004)Google Scholar
  4. 4.
    Bar-yossef, Z., Mashiach, L.T.: Local approximation of pagerank and reverse pagerank. In: International Conference on Information and Knowledge Management, pp. 279–288 (2008)Google Scholar
  5. 5.
    Bressan, M., Pretto, L.: Local computation of PageRank: the ranking side. In: International Conference on Information and Knowledge Management, pp. 631–640 (2011)Google Scholar
  6. 6.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30, 107–117 (1998)CrossRefGoogle Scholar
  7. 7.
    Broder, A.Z., Lempel, R., Maghoul, F., Pedersen, J.O.: Efficient PageRank approximation via graph aggregation. Information Retrieval 9, 123–138 (2006)CrossRefGoogle Scholar
  8. 8.
    Chen, Y.-Y., Gan, Q., Suel, T.: Local methods for estimating pagerank values. In: International Conference on Information and Knowledge Management, pp. 381–389 (2004)Google Scholar
  9. 9.
    Davis, J.V., Dhillon, I.S.: Estimating the global pagerank of web communities. In: Knowledge Discovery and Data Mining, pp. 116–125 (2006)Google Scholar
  10. 10.
    Haveliwala, T.H.: Efficient computation of pagerank. Technical report, Stanford InfoLab (October 1999)Google Scholar
  11. 11.
    Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating PageRank computations. In: World Wide Web Conference Series, pp. 261–270 (2003)Google Scholar
  12. 12.
    Morrison, J.L., Breitling, R., Higham, D.J., Gilbert, D.R.: GeneRank: Using search engine technology for the analysis of microarray experiments. BMC Bioinformatics 6 (2005)Google Scholar
  13. 13.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab (November 1999)Google Scholar
  14. 14.
    Sakakura, Y., Yamaguchi, Y., Amagasa, T., Kitagawa, H.: A Local Method for ObjectRank Estimation. In: International Conference on Information Integration and Web-Based Applications & Services, pp. 92–101 (2013)Google Scholar
  15. 15.
    Spearman, C.: Footrule for Measuring Correlation. British Journal of Psychology 2, 89–108 (1906)Google Scholar
  16. 16.
    Vattani, A., Chakrabarti, D., Gurevich, M.: Preserving personalized pagerank in subgraphs. In: International Conference on Machine Learning, pp. 793–800 (2011)Google Scholar
  17. 17.
    Weng, J., Lim, E.-P., Jiang, J., He, Q.: TwitterRank: finding topic-sensitive influential twitterers. In: Web Search and Data Mining, pp. 261–270 (2010)Google Scholar
  18. 18.
    Wu, Y., Raschid, L.: ApproxRank: Estimating Rank for a Subgraph. In: International Conference on Data Engineering, pp. 54–65 (2009)Google Scholar
  19. 19.
    Xue, G.-R., Zeng, H.-J., Chen, Z., Ma, W.-Y., Zhang, H.-J., Lu, C.-J.: Implicit link analysis for small web search. In: Research and Development in Information Retrieval, pp. 56–63 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yuta Sakakura
    • 1
  • Yuto Yamaguchi
    • 1
  • Toshiyuki Amagasa
    • 2
  • Hiroyuki Kitagawa
    • 2
  1. 1.Graduate School of Systems and Information EngineeringUniversity of TsukubaTsukubaJapan
  2. 2.Faculty of Engineering, Information and SystemsUniversity of TsukubaTsukubaJapan

Personalised recommendations