Benchmarking Database Systems for Graph Pattern Matching

  • Nataliia Pobiedina
  • Stefan Rümmele
  • Sebastian Skritek
  • Hannes Werthner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8644)

Abstract

In graph pattern matching the task is to find inside a given graph some specific smaller graph, called pattern. One way of solving this problem is to express it in the query language of a database system. We express graph pattern matching in four different query languages and benchmark corresponding database systems to evaluate their performance on this task. The considered systems and languages are the relational database PostgreSQL with SQL, the RDF database Jena TDB with SPARQL, the graph database Neo4j with Cypher, and the deductive database Clingo with ASP.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bringmann, B., Berlingerio, M., Bonchi, F., Gionis, A.: Learning and predicting the evolution of social networks. IEEE Intelligent Systems 25(4), 26–35 (2010)CrossRefGoogle Scholar
  2. 2.
    Asnar, Y., Paja, E., Mylopoulos, J.: Modeling design patterns with description logics: A case study. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 169–183. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Zou, L., Chen, L., Özsu, M.T., Zhao, D.: Answering pattern match queries in large graph databases via graph embedding. VLDB J. 21(1), 97–120 (2012)CrossRefGoogle Scholar
  4. 4.
    Lee, J., Han, W.S., Kasperovics, R., Lee, J.H.: An in-depth comparison of subgraph isomorphism algorithms in graph databases. PVLDB 6(2), 133–144 (2012)Google Scholar
  5. 5.
    Fan, W., Li, J., Ma, S., Tang, N., Wu, Y.: Adding regular expressions to graph reachability and pattern queries. Frontiers of Computer Science 6(3), 313–338 (2012)MATHMathSciNetGoogle Scholar
  6. 6.
    Xu, J., Chen, H.: Criminal network analysis and visualization. Commun. ACM 48(6), 100–107 (2005)CrossRefGoogle Scholar
  7. 7.
    Holzschuher, F., Peinl, R.: Performance of graph query languages: comparison of Cypher, Gremlin and native access in Neo4j. In: Proc. EDBT/ICDT Workshops, pp. 195–204 (2013)Google Scholar
  8. 8.
    Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison of a graph database and a relational database: a data provenance perspective. In: Proc. ACM Southeast Regional Conference, p. 42 (2010)Google Scholar
  9. 9.
    Angles, R., Prat-Pérez, A., Dominguez-Sal, D., Larriba-Pey, J.L.: Benchmarking database systems for social network applications. In: Proc. GRADES, p. 15 (2013)Google Scholar
  10. 10.
    Karp, R.M.: Reducibility among combinatorial problems. In: Proc. Complexity of Computer Computations, pp. 85–103 (1972)Google Scholar
  11. 11.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Gallagher, B.: Matching structure and semantics: A survey on graph-based pattern matching. In: Proc. AAAI Fall Symposium on Capturing and Using Patterns for Evidence Detection (2006)Google Scholar
  13. 13.
    Tudorica, B.G., Bucur, C.: A comparison between several NoSQL databases with comments and notes. In: Proc. Roedunet International Conference, pp. 1–5 (2011)Google Scholar
  14. 14.
    Angles, R.: A comparison of current graph database models. In: Proc. ICDE Workshops, pp. 171–177 (2012)Google Scholar
  15. 15.
    Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vañó, A., Gómez-Villamor, S., Martínez-Bazán, N., Larriba-Pey, J.L.: Survey of graph database performance on the HPC scalable graph analysis benchmark. In: Shen, H.T., Pei, J., Özsu, M.T., Zou, L., Lu, J., Ling, T.-W., Yu, G., Zhuang, Y., Shao, J. (eds.) WAIM 2010. LNCS, vol. 6185, pp. 37–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.: Potassco: The Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)MATHMathSciNetGoogle Scholar
  17. 17.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Syrjänen, T., Niemelä, I.: The Smodels system. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 434–438. Springer, Heidelberg (2001)Google Scholar
  19. 19.
    Alviano, M., et al.: The fourth answer set programming competition: Preliminary report. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 42–53. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science Magazine 286(5439), 509–512 (1999)Google Scholar
  21. 21.
    Gehrke, J., Ginsparg, P., Kleinberg, J.M.: Overview of the 2003 KDD cup. SIGKDD Explorations 5(2), 149–151 (2003)CrossRefGoogle Scholar
  22. 22.
    Pobiedina, N., Ichise, R.: Predicting citation counts for academic literature using graph pattern mining. In: Proc. IEA/AIE, pp. 109–119 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nataliia Pobiedina
    • 1
  • Stefan Rümmele
    • 2
  • Sebastian Skritek
    • 2
  • Hannes Werthner
    • 1
  1. 1.Institute of Software Technology and Interactive SystemsTU ViennaAustria
  2. 2.Institute of Information SystemsTU ViennaAustria

Personalised recommendations