Chern–Simons-Like Gravity Theories

  • Eric A. Bergshoeff
  • Olaf Hohm
  • Wout Merbis
  • Alasdair J. Routh
  • Paul K. Townsend
Part of the Lecture Notes in Physics book series (LNP, volume 892)


A wide class of three-dimensional gravity models can be put into “Chern–Simons-like” form. We perform a Hamiltonian analysis of the general model and then specialise to Einstein-Cartan Gravity, General Massive Gravity, the recently proposed Zwei-Dreibein Gravity and a further parity violating generalisation combining the latter two.


Poisson Bracket Constraint Function Massive Gravity Primary Constraint Local Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This paper is based upon lectures given by Eric Bergshoeff and Paul Townsend at the Seventh Aegean Summer School Beyond Einstein’s Theory of Gravity in Paros, Greece. Eric A. Bergshoeff, Wout Merbis, Alasdair J. Routh and Paul K. Townsend thank the organizers of the Paros School for providing an inspiring environment. We are also grateful to Joaquim Gomis and Marc Henneaux for discussions and correspondence on Hamiltonian methods.


  1. 1.
    A. Achúcarro, P.K. Townsend, A Chern-Simons action for three-dimensional anti-De Sitter supergravity theories. Phys. Lett. B 180, 89 (1986)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    E. Witten, (2+1)-Dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46 (1988)Google Scholar
  3. 3.
    S. Deser, R. Jackiw, S. Templeton, Topologically massive Gauge theories. Ann. Phys. 140, 372 (1982) [Erratum Ann. Phys. 185, 406 (1988)]Google Scholar
  4. 4.
    E.A. Bergshoeff, O. Hohm, P.K. Townsend, Massive gravity in three dimensions. Phys. Rev. Lett. 102, 201301 (2009) [arXiv:0901.1766]; More on massive 3D gravity. Phys. Rev. D79, 124042 (2009) [arXiv:0905.1259]
  5. 5.
    O. Hohm, A. Routh, P.K. Townsend, B. Zhang, On the Hamiltonian form of 3D massive gravity. Phys. Rev. D 86, 084035 (2012) [arXiv:1208.0038]ADSCrossRefGoogle Scholar
  6. 6.
    E.A. Bergshoeff, S. de Haan, O. Hohm, W. Merbis, P.K. Townsend, Zwei-Dreibein gravity. Phys. Rev. Lett. 111, 111102 (2013) [arXiv:1307.2774]ADSCrossRefGoogle Scholar
  7. 7.
    D.G. Boulware, S. Deser, Can gravitation have a finite range? Phys. Rev. D 6, 3368 (1972)ADSCrossRefGoogle Scholar
  8. 8.
    M. Bañados, C. Deffayet, M. Pino, The Boulware-Deser mode in Zwei-Dreibein gravity. Phys. Rev. D 88, 124016 (2013) [arXiv:1310.3249]ADSCrossRefGoogle Scholar
  9. 9.
    P.A.M. Dirac, Lectures on Quantum Mechanics (Dover, New York, 2001)Google Scholar
  10. 10.
    D. Dominici, J. Gomis, K. Kamimura, G. Longhi, Dynamical sectors of a relativistic two particle model. Phys. Rev. D89, 045001 (2014) [arXiv:1312.1000]ADSGoogle Scholar
  11. 11.
    E.A. Bergshoeff, A.F. Goya, W. Merbis, J. Rosseel, Logarithmic AdS waves and Zwei-Dreibein gravity. JHEP 1404, 012 (2014) [arXiv:1401.5386] ADSCrossRefGoogle Scholar
  12. 12.
    A. Routh, The Hamiltonian form of topologically massive supergravity. Phys. Rev. D 88, 024022 (2013) [arXiv:1301.7671]ADSCrossRefGoogle Scholar
  13. 13.
    H.R. Afshar, E.A. Bergshoeff, W. Merbis, Extended massive gravity in three dimensions JHEP 1408, 115 (2014) [arXiv:1405.6213]Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Eric A. Bergshoeff
    • 1
    • 1
  • Olaf Hohm
    • 2
  • Wout Merbis
    • 1
  • Alasdair J. Routh
    • 3
  • Paul K. Townsend
    • 3
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Center for Theoretical PhysicsMassachusetts Institute for TechnologyCambridgeUSA
  3. 3.Department of Applied and Mathematical Physics, Centre for Mathematical SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations