Advertisement

Higher Spin Black Holes

  • Alfredo Pérez
  • David Tempo
  • Ricardo TroncosoEmail author
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 892)

Abstract

We review some relevant results in the context of higher spin black holes in three-dimensional spacetimes, focusing on their asymptotic behaviour and thermodynamic properties. For simplicity, we mainly discuss the case of gravity nonminimally coupled to spin-three fields, being nonperturbatively described by a Chern–Simons theory of two independent \(\mathit{sl}\left (3, \mathbb{R}\right )\) gauge fields. Since the analysis is particularly transparent in the Hamiltonian formalism, we provide a concise discussion of their basic aspects in this context; and as a warming up exercise, we briefly analyze the asymptotic behaviour of pure gravity, as well as the BTZ black hole and its thermodynamics, exclusively in terms of gauge fields. The discussion is then extended to the case of black holes endowed with higher spin fields, briefly signaling the agreements and discrepancies found through different approaches. We conclude explaining how the puzzles become resolved once the fall off of the fields is precisely specified and extended to include chemical potentials, in a way that it is compatible with the asymptotic symmetries. Hence, the global charges become completely identified in an unambiguous way, so that different sets of asymptotic conditions turn out to contain inequivalent classes of black hole solutions being characterized by a different set of global charges.

Keywords

Black Hole High Spin Gauge Transformation Black Hole Solution Gauge Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank G. Barnich, X. Bekaert, E. Bergshoeff, C. Bunster, A. Campoleoni, R. Canto, D. Grumiller, M. Henneaux, J. Jottar, C. Martínez, J. Matulich, J. Ovalle, R. Rahman, S-J Rey, J. Rosseel, C. Troessaert and M. Vasiliev for stimulating discussions. R.T. also thanks E. Papantonopoulos and the organizers of the Seventh Aegean Summer School, “Beyond Einstein’s theory of gravity”, for the opportunity to give this lecture in a wonderful atmosphere. This work is partially funded by the Fondecyt grants N 1130658, 1121031, 11130260, 11130262. The Centro de Estudios Científicos (CECs) is funded by the Chilean Government through the Centers of Excellence Base Financing Program of Conicyt.

References

  1. 1.
    P. Van Nieuwenhuizen, “Supergravity.” Phys. Rept. 68, 189 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    X. Bekaert, N. Boulanger, P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples. Rev. Mod. Phys. 84, 987 (2012).[arXiv:1007.0435 [hep-th]]Google Scholar
  3. 3.
    C. Aragone, S. Deser, Consistency problems of hypergravity. Phys. Lett. B 86, 161 (1979)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    M.A. Vasiliev, “Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions.”Phys. Lett. B 243, 378 (1990)Google Scholar
  5. 5.
    M.A. Vasiliev, “Nonlinear equations for symmetric massless higher spin fields in (A)dS(d).”Phys. Lett. B 567, 139 (2003). [hep-th/0304049]Google Scholar
  6. 6.
    X. Bekaert, S. Cnockaert, C. Iazeolla, M.A. Vasiliev, “Nonlinear higher spin theories in various dimensions.” (2005). [hep-th/0503128]Google Scholar
  7. 7.
    A. Sagnotti, Notes on strings and higher spins. J. Phys. A 46, 214006 (2013). [arXiv:1112.4285 [hep-th]]Google Scholar
  8. 8.
    M.A. Vasiliev, “Higher-Spin Theory and Space-Time Metamorphoses.” arXiv:1404.1948 [hep-th]Google Scholar
  9. 9.
    R. Troncoso, J. Zanelli, New gauge supergravity in seven-dimensions and eleven-dimensions. Phys. Rev. D 58, 10170 (1998). [hep-th/9710180]CrossRefMathSciNetGoogle Scholar
  10. 10.
    M.P. Blencowe, “A consistent interacting massless higher spin field theory in D = (2 + 1).” Class. Quant. Gravity 6, 443 (1989)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    E. Bergshoeff, M.P. Blencowe, K.S. Stelle, “Area preserving diffeomorphisms and higher spin algebra.” Commun. Math. Phys. 128, 213 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    M.A. Vasiliev, “Higher spin gauge theories in four-dimensions, three-dimensions, and two-dimensions.” Int. J. Mod. Phys. D 5, 763 (1996). [hep-th/9611024]ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    M. Gutperle, P. Kraus, Higher spin black holes. J. High Energy Phys. 1105, 022 (2011). [arXiv:1103.4304 [hep-th]]Google Scholar
  14. 14.
    A. Castro, E. Hijano, A. Lepage-Jutier, A. Maloney, Black holes and singularity resolution in higher spin gravity. J. High Energy Phys. 1201, 031 (2012). [arXiv:1110.4117 [hep-th]]Google Scholar
  15. 15.
    M. Henneaux, A. Prez, D. Tempo, R. Troncoso, “Chemical potentials in three-dimensional higher spin anti-de Sitter gravity.” J. High Energy Phys. 1312, 048 (2013). [arXiv:1309.4362 [hep-th]]Google Scholar
  16. 16.
    C. Bunster, M. Henneaux, A. Prez, D. Tempo, R. Troncoso, “Generalized black holes in three-dimensional spacetime.” JHEP 1405, 031 (2014). [arXiv:1404.3305 [hep-th]]Google Scholar
  17. 17.
    A. Campoleoni, S. Fredenhagen, S. Pfenninger, S. Theisen, Towards metric-like higher-spin gauge theories in three dimensions. J. Phys. A 46, 214017 (2013). [arXiv:1208.1851 [hep-th]]Google Scholar
  18. 18.
    J.D. Brown, M. Henneaux, “Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity.”Commun. Math. Phys. 104, 207 (1986)Google Scholar
  19. 19.
    M. Banados, C. Teitelboim, J. Zanelli, The black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849 (1992). [hep-th/9204099]ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    M. Banados, M. Henneaux, C. Teitelboim, J. Zanelli, Geometry of the (2+1) black hole. Phys. Rev. D 48, 1506 (1993. [gr-qc/9302012]Google Scholar
  21. 21.
    M. Henneaux, S.-J. Rey, “Nonlinear W infinity as asymptotic symmetry of three-dimensional higher spin anti-de sitter gravity.” J. High Energy Phys. 1012, 007 (2010). [arXiv:1008.4579 [hep-th]]Google Scholar
  22. 22.
    A. Campoleoni, S. Fredenhagen, S. Pfenninger, S. Theisen, “Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields.” J. High Energy Phys. 1011, 007 (2010). [arXiv:1008.4744 [hep-th]]Google Scholar
  23. 23.
    M. Ammon, M. Gutperle, P. Kraus, E. Perlmutter, Spacetime geometry in higher spin gravity. J. High Energy Phys. 1110, 053 (2011). [arXiv:1106.4788 [hep-th]]Google Scholar
  24. 24.
    A. Prez, D. Tempo, R. Troncoso, “Higher spin gravity in 3D: black holes, global charges and thermodynamics.” Phys. Lett. B 726, 444 (2013). [arXiv:1207.2844 [hep-th]]Google Scholar
  25. 25.
    A. Pérez, D. Tempo, R. Troncoso, “Higher spin black hole entropy in three dimensions.” J. High Energy Phys. 1304, 143 (2013). [arXiv:1301.0847 [hep-th]]Google Scholar
  26. 26.
    A.P. Balachandran, G. Bimonte, K.S. Gupta, A. Stern, “Conformal edge currents in Chern-Simons theories.” Int. J. Mod. Phys. A 7, 4655 (1992). [hep-th/9110072]ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    M. Banados, “Global charges in Chern-Simons field theory and the (2+1) black hole.”Phys. Rev. D 52, 5816 (1996). [hep-th/9405171]Google Scholar
  28. 28.
    S. Carlip, “Conformal field theory, (2 + 1)-dimensional gravity, and the BTZ black hole.”Class. Quant. Gravity 22, R85 (2005). [gr-qc/0503022]Google Scholar
  29. 29.
    T. Regge, C. Teitelboim, “Role of surface integrals in the Hamiltonian formulation Of general relativity.” Ann. Phys. 88, 286 (1974)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    A. Achucarro, P.K. Townsend, “A Chern-Simons action for three-dimensional anti-De Sitter supergravity theories.” Phys. Lett. B 180, 89 (1986)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    E. Witten, “(2 + 1)-dimensional gravity as an exactly soluble system.” Nucl. Phys. B 311, 46 (1988)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    O. Coussaert, M. Henneaux, P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant. Class. Quant. Gravity 12, 2961 (1995). [gr-qc/9506019]Google Scholar
  33. 33.
    S. Carlip, C. Teitelboim, Aspects of black hole quantum mechanics and thermodynamics in (2+1)-dimensions. Phys. Rev. D 51, 622 (1995). [gr-qc/9405070]Google Scholar
  34. 34.
    J.M. Maldacena, A. Strominger, AdS(3) black holes and a stringy exclusion principle. J. High Energy Phys. 9812, 005 (1998). [hep-th/9804085]ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    H.A. Gonzalez, J. Matulich, M. Pino, R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity. J. High Energy Phys. 1309, 016 (2013). [arXiv:1307.5651 [hep-th]]Google Scholar
  36. 36.
    H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller, J. Rosseel, “Higher spin theory in 3-dimensional flat space.” Phys. Rev. Lett. 111, 121603 (2013). [arXiv:1307.4768 [hep-th]]Google Scholar
  37. 37.
    H. A. González, M. Pino, “Boundary dynamics of asymptotically flat 3D gravity coupled to higher spin fields.” arXiv:1403.4898 [hep-th]Google Scholar
  38. 38.
    D. Grumiller, M. Riegler, J. Rosseel, “Unitarity in three-dimensional flat space higher spin theories.” arXiv:1403.5297 [hep-th]Google Scholar
  39. 39.
    C. Krishnan, S. Roy, “Higher Spin Resolution of a Toy Big Bang.” Phys. Rev. D 88, 044049 (2013) [arXiv:1305.1277 [hep-th]]Google Scholar
  40. 40.
    B. Burrington, L.A. Pando Zayas, N. Rombes, “On resolutions of cosmological singularities in higher-spin gravity. ” (2013). [arXiv:1309.1087 [hep-th]]Google Scholar
  41. 41.
    C. Krishnan, S. Roy, Desingularization of the Milne Universe (2013). [arXiv:1311.7315 [hep-th]]Google Scholar
  42. 42.
    C. Krishnan, A. Raju, S. Roy, “A Grassmann path from AdS 3 to flat space. ” (2013). arXiv:1312.2941 [hep-th]Google Scholar
  43. 43.
    G. Compre, W. Song, \(\mathcal{W}\) symmetry and integrability of higher spin black holes. J. High Energy Phys. 1309, 144 (2013). [arXiv:1306.0014 [hep-th]]Google Scholar
  44. 44.
    G. Compre, J.I. Jottar, W. Song, Observables and microscopic entropy of higher spin black holes. J. High Energy Phys. 1311, 054 (2013). [arXiv:1308.2175 [hep-th]]Google Scholar
  45. 45.
    M.R. Gaberdiel, T. Hartman, K. Jin, “Higher spin black holes from CFT.” J. High Energy Phys. 1204, 103 (2012). [arXiv:1203.0015 [hep-th]]Google Scholar
  46. 46.
    M.R. Gaberdiel, R. Gopakumar, Minimal model holography. J. Phys. A 46, 214002 (2013). [arXiv:1207.6697 [hep-th]]Google Scholar
  47. 47.
    M. Ammon, M. Gutperle, P. Kraus, E. Perlmutter, Black holes in three dimensional higher spin gravity: a review. J. Phys. A 46, 214001 (2013). [arXiv:1208.5182 [hep-th]]Google Scholar
  48. 48.
    K. Jin, Higher spin gravity and exact holography. PoS Corfu 2012, 086 (2013). [arXiv:1304.0258 [hep-th]]Google Scholar
  49. 49.
    B. Chen, J. Long, Y.-n. Wang, Black holes in truncated higher spin AdS3 gravity. J. High Energy Phys. 1212, 052 (2012). [arXiv:1209.6185 [hep-th]]Google Scholar
  50. 50.
    J.R. David, M. Ferlaino, S.P. Kumar, Thermodynamics of higher spin black holes in 3D. J. High Energy Phys. 1211, 135 (2012). [arXiv:1210.0284 [hep-th]]Google Scholar
  51. 51.
    B. Chen, J. Long, Y. -N. Wang, “Phase Structure of Higher Spin Black Hole.” JHEP 1303, 017 (2013). [arXiv:1212.6593]ADSCrossRefMathSciNetGoogle Scholar
  52. 52.
    P. Kraus, T. Ugajin, An entropy formula for higher spin black holes via conical singularities. J. High Energy Phys. 1305, 160 (2013). [arXiv:1302.1583 [hep-th]]Google Scholar
  53. 53.
    J. de Boer, J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3. J. High Energy Phys. 1401, 023 (2014). [arXiv:1302.0816 [hep-th]]Google Scholar
  54. 54.
    J. de Boer, J.I. Jottar, “Entanglement entropy and higher spin holography in AdS3.” (2013). arXiv:1306.4347 [hep-th]Google Scholar
  55. 55.
    M. Beccaria, G. Macorini, On the partition functions of higher spin black holes. J. High Energy Phys. 1312, 027 (2013). [arXiv:1310.4410 [hep-th]]Google Scholar
  56. 56.
    M. Beccaria, G. Macorini, “Analysis of higher spin black holes with spin-4 chemical potential.” (2013). arXiv:1312.5599 [hep-th]Google Scholar
  57. 57.
    B. Chen, J. Long, J. -J. Zhang, “Holographic Rényi entropy for CFT with W symmetry.” arXiv:1312.5510 [hep-th]Google Scholar
  58. 58.
    S. Datta, J.R. David, M. Ferlaino, S.P. Kumar, Higher spin entanglement entropy from CFT. (2014). arXiv:1402.0007 [hep-th]Google Scholar
  59. 59.
    M. Henneaux, C. Martínez, R. Troncoso, J. Zanelli, “Black holes and asymptotics of 2 + 1 gravity coupled to a scalar field.” Phys. Rev. D 65, 104007 (2002). [arXiv:hep-th/0201170]ADSCrossRefMathSciNetGoogle Scholar
  60. 60.
    M. Henneaux, C. Martínez, R. Troncoso, J. Zanelli, “Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch. ” Phys. Rev. D 70, 044034 (2004). [hep-th/0404236]ADSCrossRefMathSciNetGoogle Scholar
  61. 61.
    R.M. Wald, “Black hole entropy is the noether charge.” Phys. Rev. D 48, 3427 (1993). [gr-qc/9307038]Google Scholar
  62. 62.
    M. Ammon, A. Castro, N. Iqbal, Wilson lines and entanglement entropy in higher spin gravity. J. High Energy Phys. 1310, 110 (2013). [arXiv:1306.4338 [hep-th]]Google Scholar
  63. 63.
    L. McGough, H. Verlinde, Bekenstein-Hawking entropy as topological entanglement entropy. J. High Energy Phys. 1311, 208 (2013). [arXiv:1308.2342 [hep-th]]Google Scholar
  64. 64.
    W. Li, F.-L. Lin, C.-W. Wang, Modular properties of 3D higher spin theory. J. High Energy Phys. 1312, 094 (2013). [arXiv:1308.2959 [hep-th]]Google Scholar
  65. 65.
    A. Chowdhury, A. Saha, Phase structure of higher spin black holes (2013). arXiv:1312.7017 [hep-th]Google Scholar
  66. 66.
    M. Gutperle, E. Hijano, J. Samani, Lifshitz black holes in higher spin gravity (2013). arXiv:1310.0837 [hep-th]Google Scholar
  67. 67.
    A.M. Polyakov, Gauge transformations and diffeomorphisms. Int. J. Mod. Phys. A 5, 833 (1990).ADSCrossRefMathSciNetGoogle Scholar
  68. 68.
    M. Bershadsky, “Conformal field theories via Hamiltonian reduction. ”Commun. Math. Phys. 139, 71 (1991)Google Scholar
  69. 69.
    I. Fujisawa, R. Nakayama, “Second-order formalism for 3D spin-3 gravity.”Class. Quant. Gravity 30, 035003 (2013). [arXiv:1209.0894 [hep-th]]Google Scholar
  70. 70.
    A. Campoleoni, S. Fredenhagen, S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories. ” J. High Energy Phys. 1109, 113 (2011). [arXiv:1107.0290 [hep-th]]Google Scholar
  71. 71.
    M.R. Gaberdiel, T. Hartman, Symmetries of holographic minimal models. J. High Energy Phys. 1105, 031 (2011). [arXiv:1101.2910 [hep-th]]Google Scholar
  72. 72.
    P. Kraus, E. Perlmutter, “Partition functions of higher spin black holes and their CFT duals. ”J. High Energy Phys. 1111, 061 (2011). [arXiv:1108.2567 [hep-th]]Google Scholar
  73. 73.
    H.-S. Tan, “Aspects of three-dimensional spin-4 gravity.” J. High Energy Phys. 1202, 035 (2012). [arXiv:1111.2834 [hep-th]]Google Scholar
  74. 74.
    M. Gary, D. Grumiller, R. Rashkov, “Towards non-AdS holography in 3-dimensional higher spin gravity.” J. High Energy Phys. 1203, 022 (2012). [arXiv:1201.0013 [hep-th]]Google Scholar
  75. 75.
    M. Banados, R. Canto, S. Theisen, “The action for higher spin black holes in three dimensions.”J. High Energy Phys. 1207, 147 (2012). [arXiv:1204.5105 [hep-th]]Google Scholar
  76. 76.
    M. Ferlaino, T. Hollowood, S.P. Kumar, “Asymptotic symmetries and thermodynamics of higher spin black holes in AdS3,” Phys. Rev. D 88, 066010 (2013). [arXiv:1305.2011 [hep-th]]Google Scholar
  77. 77.
    M. Henneaux, G. Lucena Gómez, J. Park, S.-J. Rey, “Super- W(infinity) asymptotic symmetry of higher-spin AdS 3 supergravity.” J. High Energy Phys. 1206, 037 (2012). [arXiv:1203.5152 [hep-th]]Google Scholar
  78. 78.
    B. Chen, J. Long, Y. -N. Wang, “Conical Defects, Black Holes and Higher Spin (Super-) Symmetry.” JHEP 1306, 025 (2013). [arXiv:1303.0109 [hep-th]]Google Scholar
  79. 79.
    S. Datta, J.R. David, Black holes in higher spin supergravity. J. High Energy Phys. 1307, 110 (2013). [arXiv:1303.1946 [hep-th]]Google Scholar
  80. 80.
    H.S. Tan, “Exploring three-dimensional higher-spin supergravity based on sl(N \(\vert\) N - 1) Chern-Simons theories.” J. High Energy Phys. 1211, 063 (2012). [arXiv:1208.2277 [hep-th]]Google Scholar
  81. 81.
    M.R. Gaberdiel, R. Gopakumar, A. Saha, “Quantum W-symmetry in AdS 3,” J. High Energy Phys. 1102, 004 (2011). [arXiv:1009.6087 [hep-th]]Google Scholar
  82. 82.
    M.R. Gaberdiel, R. Gopakumar, “An AdS 3 dual for minimal model CFTs.” Phys. Rev. D 83, 066007 (2011). [arXiv:1011.2986 [hep-th]]Google Scholar
  83. 83.
    M.R. Gaberdiel, R. Gopakumar, T. Hartman, S. Raju, “Partition functions of holographic minimal models.” J. High Energy Phys. 1108, 077 (2011). [arXiv:1106.1897 [hep-th]]Google Scholar
  84. 84.
    A. Castro, R. Gopakumar, M. Gutperle, J. Raeymaekers, Conical defects in higher spin theories. J. High Energy Phys. 1202, 096 (2012). [arXiv:1111.3381 [hep-th]]Google Scholar
  85. 85.
    M. Ammon, P. Kraus, E. Perlmutter, “Scalar fields and three-point functions in D = 3 higher spin gravity. ” J. High Energy Phys. 1207, 113 (2012). [arXiv:1111.3926 [hep-th]]Google Scholar
  86. 86.
    M.R. Gaberdiel, P. Suchanek, “Limits of minimal models and continuous orbifolds. ” J. High Energy Phys. 1203, 104 (2012). [arXiv:1112.1708 [hep-th]]Google Scholar
  87. 87.
    P. Kraus, E. Perlmutter, Probing higher spin black holes. J. High Energy Phys. 1302, 096 (2013). [arXiv:1209.4937 [hep-th]]Google Scholar
  88. 88.
    S. Banerjee, A. Castro, S. Hellerman, E. Hijano, A. Lepage-Jutier, A. Maloney, S. Shenker, “Smoothed transitions in higher spin AdS gravity.”Class. Quant. Grav. 30, 104001 (2013). [arXiv:1209.5396 [hep-th]]Google Scholar
  89. 89.
    A. Campoleoni, T. Prochazka, J. Raeymaekers, A note on conical solutions in 3D Vasiliev theory. J. High Energy Phys. 1305, 052 (2013). [arXiv:1303.0880 [hep-th]]Google Scholar
  90. 90.
    M.R. Gaberdiel, K. Jin, E. Perlmutter, “Probing higher spin black holes from CFT. ” J. High Energy Phys. 1310, 045 (2013). [arXiv:1307.2221 [hep-th]]Google Scholar
  91. 91.
    A. Campoleoni, S. Fredenhagen, On the higher-spin charges of conical defects. Phys. Lett. B 726, 387 (2013). [arXiv:1307.3745]ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alfredo Pérez
    • 1
  • David Tempo
    • 1
  • Ricardo Troncoso
    • 1
    • 2
    Email author
  1. 1.Centro de Estudios Científicos (CECs)ValdiviaChile
  2. 2.Universidad Andrés BelloSantiagoChile

Personalised recommendations