Exploiting Diversification in Gossip-Based Recommendation

  • Maximilien Servajean
  • Esther Pacitti
  • Miguel Liroz-Gistau
  • Sihem Amer-Yahia
  • Amr El Abbadi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8648)


In the context of Web 2.0, the users become massive producers of diverse data that can be stored in a large variety of systems. The fact that the users’ data spaces are distributed in many different systems makes data sharing difficult. In this context of large scale distribution of users and data, a general solution to data sharing is offered by distributed search and recommendation. In particular, gossip-based approaches provide scalability, dynamicity, autonomy and decentralized control. Generally, in gossip-based search and recommendation, each user constructs a cluster of “relevant” users that will be employed in the processing of queries. However, considering only relevance introduces a significant amount of redundancy among users. As a result, when a query is submitted, as the user profiles in each user’s cluster are quite similar, the probability of retrieving the same set of relevant items increases, and recall results are limited. In this paper, we propose a gossip-based search and recommendation approach that is based on a new clustering score, called usefulness, that combines relevance and diversity, and we present the corresponding new gossip-based clustering algorithm. We validate our proposal with an experimental evaluation using three datasets based on MovieLens, Flickr and LastFM. Compared with state of the art solutions, we obtain major gains with a three order of magnitude recall improvement when using the notion of usefulness regardless of the relevance score between two users used.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bai, X., et al.: Collaborative personalized top-k processing. Transactions on Database Systems 36(26) (December 2011)Google Scholar
  2. 2.
    Carretero, J., et al.: Geology: Modular georecommendation in gossip-based social networks. In: ICDCS, pp. 637–646 (2012)Google Scholar
  3. 3.
    Draidi, F., Pacitti, E., Parigot, D., Verger, G.: P2Prec: a social-based P2P recommendation system. In: CIKM, pp. 2593–2596 (2011)Google Scholar
  4. 4.
    Voulgaris, S., van Steen, M.: Epidemic-style management of semantic overlays for content-based searching. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 1143–1152. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Jelasity, M., Babaoglu, O.: T-man: Gossip-based overlay topology management. In: Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS (LNAI), vol. 3910, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Kermarrec, A., Leroy, V., Moin, A., Thraves, C.: Application of random walks to decentralized recommender systems. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 48–63. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Kermarrec, A., Taïani, F.: Diverging towards the common good: Heterogeneous self-organisation in decentralised recommenders. In: SNS, pp. 3–8 (2012)Google Scholar
  8. 8.
    Angel, A., Koudas, N.: Efficient diversity-aware search. In: SIGMOD, pp. 781–792 (2011)Google Scholar
  9. 9.
    Chen, H., Karger, D.: Less is more: Probabilistic models for retrieving fewer relevant documents. In: SIGIR, pp. 429–436 (2006)Google Scholar
  10. 10.
    Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)Google Scholar
  11. 11.
    Kowalczyk, W., Jelasity, M., Eiben, A.: Towards data mining in large and fully distributed peer-to-peer overlay networks. In: BNAIC, pp. 203–210 (2003)Google Scholar
  12. 12.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc. (1999)Google Scholar
  13. 13.
    Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: SIGIR, pp. 335–336 (1998)Google Scholar
  14. 14.
    Santos, R., Peng, J., Macdonald, C., Ounis, I.: Explicit search result diversification through sub-queries. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 87–99. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Loupasakis, A., Ntarmos, N.: eXO: Decentralized autonomous scalable social networking. In: CIDR, pp. 85–95 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Maximilien Servajean
    • 1
  • Esther Pacitti
    • 1
  • Miguel Liroz-Gistau
    • 2
  • Sihem Amer-Yahia
    • 3
  • Amr El Abbadi
    • 4
  1. 1.INRIA & LIRMM, University of MontpellierFrance
  2. 2.INRIA & LIRMMMontpellierFrance
  3. 3.CNRS, LIGFrance
  4. 4.Dpt. of Computer ScienceUniversity of California at Santa BarbaraUSA

Personalised recommendations