Irreversible and Reversible Redox Reactions: Water Window

  • Naser Pour Aryan
  • Hans Kaim
  • Albrecht Rothermel
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC, volume 78)


As mentioned above, capacitive charging cannot deliver enough current if current density exceeds certain limits. The potential difference between the active (working) and the counter electrodes (used to close the electrical circuit) must remain low enough so that (almost) no redox reactions occur, if only capacitive charge injection is to follow.


Counter Electrode Redox Reaction Charge Injection Standard Hydrogen Electrode Spreading Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Bellanger G, Rameau JJ (1995) Corrosion of titanium nitride deposits on AISI 630 stainless steel used in radioactive water with and without chloride at pH 11. Electrochimica Acta 40(15):2519–2532, DOI 10.1016/0013-4686(94)00326-V, URL
  3. 3.
    Chow AY, Pardue MT, Chow VY, Peyman GA, Liang C, Perlman JI, Peachey NS (2001) Implantation of silicon chip microphotodiode arrays into the cat subretinal space. Neural Systems and Rehabilitation Engineering, IEEE Transactions on 9(1):86–95, DOI 10.1109/7333.918281 CrossRefGoogle Scholar
  4. 4.
    Cogan SF (2008) Neural stimulation and recording electrodes. Tech. rep., EIC LaboratoriesGoogle Scholar
  5. 5.
    Janders M, Egert U, Stelzle M, Nisch W (1996) Novel thin film titanium nitride micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications. In: Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, vol 1, pp 245–247 vol. 1, DOI 10.1109/IEMBS.1996.656936
  6. 6.
    Lavrenko VA, Shvets VA, Makarenko GN (2001) Comparative study of the chemical resistance of titanium nitride and stainless steel in media of the oral cavity. Powder Metallurgy and Metal Ceramics 40:630–636, URL, 10.1023/A:1015296323497
  7. 7.
    Rose TL, Robblee LS (1990) Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses (neuronal application). Biomedical Engineering, IEEE Transactions on 37(11):1118–1120, DOI 10.1109/10.61038
  8. 8.
    Stieglitz T (2004) Materials for stimulation and recording. Tech. rep., Neural Prosthetics Group, Fraunhofer Institute for Biomedical EngineeringGoogle Scholar
  9. 9.
    Terasawa Y, Tashiro H, Uehara A, Saitoh T, Ozawa M, Tokuda T, Ohta J (2006) The development of a multichannel electrode array for retinal prostheses. Journal of Artificial Organs 9:263–266, URL, 10.1007/s10047-006-0352-1
  10. 10.
    Weiland JD, Anderson DJ, Humayun MS (2002) In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. Biomedical Engineering, IEEE Transactions on 49(12):1574–1579, DOI 10.1109/TBME.2002.805487 CrossRefGoogle Scholar
  11. 11.
    Zhou DM, Greenberg RJ (2003) Electrochemical characterization of titanium nitride microelectrode arrays for charge-injection applications. In: Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, vol 2, pp 1964–1967 Vol. 2, DOI 10.1109/IEMBS.2003.1279831

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Naser Pour Aryan
    • 1
  • Hans Kaim
    • 1
  • Albrecht Rothermel
    • 1
  1. 1.Institute of MicroelectronicsUniversity of UlmUlmGermany

Personalised recommendations