Computational Image Modeling for Characterization and Analysis of Intracellular Cargo Transport

  • Kuan-Chieh Chen
  • Minhua Qiu
  • Jelena Kovacevic
  • Ge Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8641)


Active intracellular cargo transport is essential to survival and function of eukaryotic cells. How this process is controlled spatially and temporally so that the right cargo is delivered to the right destination at the right time remains poorly understood. To address this question, it is essential to characterize and analyze the molecular machinery and spatiotemporal behavior of intracellular transport. To this end, we developed related computational image models. Specifically, to study the molecular machinery of intracellular transport, we developed anisotropic spatial density kernels for reconstruction and segmentation of related super-resolution STORM (stochastic optical reconstruction microscopy) images. To study the spatiotemporal behavior of intracellular transport, we developed hidden Markov models and principal component analysis for representation and analysis of movement of individual transported cargoes. We validated and benchmarked the image models using simulated and actual experimental images. The models and related computational analysis methods developed in this study are general and can be used for studying molecular machinery and spatiotemporal dynamics of other cellular processes.


image modeling intracellular transport spatiotemporal dynamics super-resolution imaging STORM imaging spatial density estimation hidden Markov model principal component analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wickner, W., Schekman, R.: Protein translocation across biological membranes. Science 310, 1452–1456 (2005)CrossRefGoogle Scholar
  2. 2.
    Vale, R.D.: The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003)CrossRefGoogle Scholar
  3. 3.
    Brown, A.: Axonal transport of membranous and nonmembranous cargoes: a unified perspective. J. Cell Biol. 160, 817–821 (2003)CrossRefGoogle Scholar
  4. 4.
    De Vos, K.J., Grierson, A.J., Ackerley, S., Miller, C.C.J.: Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151–173 (2008)CrossRefGoogle Scholar
  5. 5.
    Rust, M.J., Bates, M., Zhuang, X.: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Meth. 3, 793–796 (2006)CrossRefGoogle Scholar
  6. 6.
    Qiu, M., Yang, G.: Nanometer resolution tracking and modeling of bidirectional axonal cargo transport. In: Proc. IEEE Int. Symp. Biomedical Imaging (ISBI), Barcelona, Spain, pp. 992–995 (2012)Google Scholar
  7. 7.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257–286 (1989)CrossRefGoogle Scholar
  8. 8.
    Jolliffe, I.T.: Principal Component Analysis. Springer (2002)Google Scholar
  9. 9.
    Scott, D.W.: Multivariate Density Estimation. John Wiley & Sons (1992)Google Scholar
  10. 10.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10, 266–277 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, K.C.J., Yu, Y., Li, R., Lee, H.-C., Yang, G., Kovacevic, J.: Adaptive active-mask image segmentation for quantitative characterization of mitochondrial morphology. In: 2012 19th IEEE Int. Conf. Image Processing (ICIP), pp. 2033–2036 (2012)Google Scholar
  12. 12.
    Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis and density estimation. J. Am. Stat. Assoc. 97, 611–631 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Reis, G.F., Yang, G., Szpankowski, L., Weaver, C., Shah, S.B., Robinson, J.T., Hays, T.S., Danuser, G., Goldstein, L.S.B.: Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila. Mol. Biol. Cell 23, 1700–1714 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kuan-Chieh Chen
    • 1
    • 2
  • Minhua Qiu
    • 1
    • 2
    • 4
  • Jelena Kovacevic
    • 1
    • 2
    • 3
  • Ge Yang
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Center for Bioimage InformaticsCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of Electrical EngineeringCarnegie Mellon UniversityPittsburghUSA
  4. 4.Genomics Institute of the Novartis Research FoundationSan DiegoUSA

Personalised recommendations