• Stavros C. Farantos
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Results from the application of nonlinear mechanics to interpret spectra and dynamics of small and large molecules are presented. Specifically, a vibrational quantum mechanical study for hydrogen hypochlorite with calculated vibrational energy levels up to dissociation are analysed by periodic orbits. A cascade of center-saddle bifurcations of periodic orbits follows the dissociation pathway of the molecule on the ground electronic state. The photodissociation of nitrous oxide on an electronically excited state is investigated by quantum mechanical calculations and nonlinear mechanical analysis. Periodic orbits of alanine dipeptide as well as of the active site of cytochrome c oxidase are employed to understand experimental spectra of such molecular species.


Periodic Orbit Normal Form Stable Periodic Orbit Alanine Dipeptide Periodic Orbit Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dai HL, Field R (1995) Molecular dynamics and spectroscopy by stimulated emission pumping., Advanced series in physical chemistryWorld Scientific Publishing Company, SingaporeGoogle Scholar
  2. 2.
    Daskalakis V, Farantos SC, Varotsis C (2008) Assigning vibrational spectra of ferryl-oxo intermediates of cytochrome c oxidase by periodic orbits and molecular dynamics. J Am Chem Soc 130:12,385–12,393CrossRefGoogle Scholar
  3. 3.
    Daskalakis V, Farantos SC, Guallar V, Varotsis C (2010) Vibrational resonances and Cu\(_B\) displacement controlled by proton motion in cytochrome c oxidase. J Phys Chem B 114:1136–1143CrossRefGoogle Scholar
  4. 4.
    Farantos SC (2007) Periodic orbits in biological molecules: phase space structures and selectivity in alanine dipeptide. J Chem Phys 126:175,101–175,107CrossRefGoogle Scholar
  5. 5.
    Farantos SC, Qu Z, Zhu H, Schinke R (2006) Reactions paths and elementary bifurcations tracks: the diabatic \(^1{B}_2\)-state of ozone. Int J Bif Chaos 16:1913–1928CrossRefGoogle Scholar
  6. 6.
    Farantos SC, Schinke R, Guo H, Joyeux M (2009) Energy localization in molecules, bifurcation phenomena, and their spectroscopic signatures: the global view. Chem Rev 109(9):4248–4271CrossRefGoogle Scholar
  7. 7.
    Foloppe N, MacKerell AD (2000) All-atom empirical force field for nucleic acids: I. parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21:86–104CrossRefGoogle Scholar
  8. 8.
    Fornberg B (1998) A practical guide to pseudospectral methods. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Guantes R, Farantos SC (1999) High order finite difference algorithms for solving the Schrödinger equation in molecular dynamics. J Chem Phys 111:10,827–10,835CrossRefGoogle Scholar
  10. 10.
    Guantes R, Farantos SC (2000) High order finite difference algorithms for solving the Schrödinger equation in molecular dynamics. II. periodic variables. J Chem Phys 113:10,429–10,437CrossRefGoogle Scholar
  11. 11.
    Hamm P, Lim M, DeGrado WF, Hochstrasser RM (1999) The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure. Proc Natl Acad Sci USA 96:2036CrossRefGoogle Scholar
  12. 12.
    Herman M, Lievin J, Auwera JV, Campargue A (1999) Global and accurate vibration Hamiltonians from high-resolution molecular spectroscopy. Adv Chem Phys 108:1–431Google Scholar
  13. 13.
    Ishikawa H, Field RW, Farantos SC, Joyeux M, Koput J, Beck C, Schinke R (1999) HCP - CPH isomerization: caught in the act. Ann Rev Phys Chem 50:443–484CrossRefGoogle Scholar
  14. 14.
    van der Meer J-C (1985) The Hamiltonian Hopf bifurcation. Springer, New YorkCrossRefGoogle Scholar
  15. 15.
    Joyeux M, Farantos SC, Schinke R (2002) Highly excited motion in molecules: saddle-node bifurcations and their fingerprints in vibrational spectra. J Phys Chem 106:5407–5421CrossRefGoogle Scholar
  16. 16.
    Joyeux M, Grebenshchikov SY, Bredenbeck J, Schinke R, Farantos SC (2005) Intramolecular dynamics along isomerization and dissociation pathways, in geometrical structures of phase space in multi-dimensional chaos. Adv Chem Phys 130:267–303Google Scholar
  17. 17.
    Kampanarakis A, Farantos SC, Daskalakis V, Varotsis C (2012) Non-linear vibrational modes in biomolecules: a periodic orbits description. Chem Phys 399:258–263CrossRefGoogle Scholar
  18. 18.
    Main J, Jung C, Taylor HS (1997) Extracting the dynamics in classically chaotic quantum systems: spectral analysis of the HO\(_2\) molecule. J Chem Phys 107:6577–6583CrossRefGoogle Scholar
  19. 19.
    Mauguiére FAL, Farantos SC, Suarez J, Schinke R (2011) Non-linear dynamics of the photodissociation of nitrous oxide: equilibrium points, periodic orbits, and transition states. J Chem Phys 134(24):244,302–244,312CrossRefGoogle Scholar
  20. 20.
    Moser J (1976) Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Commun Pure Appl Math 29:727–747CrossRefGoogle Scholar
  21. 21.
    Prosmiti R, Farantos SC (1995) Periodic orbits, bifurcation diagrams and the spectroscopy of C\(_2\)H\(_2\) system. J Chem Phys 103(9):3299–3314CrossRefGoogle Scholar
  22. 22.
    Prosmiti R, Farantos SC (2003) Periodic orbits and bifurcation diagrams of acetylene/vinylidene revisited. J Chem Phys 118(18):8275–8280CrossRefGoogle Scholar
  23. 23.
    Rapaport DC (1995) The art of molecular dynamics simulation. Cambridge University Press, CambridgeGoogle Scholar
  24. 24.
    Schinke R (1993) Photodissociation dynamics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. 25.
    Schinke R (2011) Photodissociation of N\(_2\)O: potential energy surfaces and absorption spectrum. J Chem Phys 134(064):313Google Scholar
  26. 26.
    Schinke R, Suarez J, Farantos SC (2010) Photodissociation of N\(_2\)O-frustrated NN bond breaking causes diffuse vibrational structures. J Chem Phys 133(091):103Google Scholar
  27. 27.
    Suarez J, Farantos SC, Stamatiadis S, Lathouwers L (2009) A method for solving the molecular Schrödinger equation in Cartesian coordinates via angular momentum projection operators. Comp Phys Comm 180:2015–2033CrossRefGoogle Scholar
  28. 28.
    Svitak J, Li Z, Rose J, Kellman ME (1995) Spectral patterns and dynamical bifurcation analysis of highly excited vibrational spectra. J Chem Phys 102:4340–4354CrossRefGoogle Scholar
  29. 29.
    Uzer T, Jaffé C, Palacián J, Yanguas P, Wiggins S (2002) The geometry of reaction dynamics. Nonlinearity 15:957–992CrossRefGoogle Scholar
  30. 30.
    Varotsis C, Babcock GT (1990) Appearance of the \(\nu \)Fe\(^{IV}\)=O) vibration from a ferryl-oxo intermediate in the cytochrome oxidase/dioxygen reaction. Biochemistry 29(32):7357–7362CrossRefGoogle Scholar
  31. 31.
    Waalkens H, Burbanks A, Wiggins S (2004) Phase space conduits for reaction in multidimensional systems: HCN isomerization in three dimensions. J Chem Phys 121(13):6207–6225CrossRefGoogle Scholar
  32. 32.
    Waalkens H, Schubert R, Wiggins S (2008) Wigner’s dynamical transition state theory in phase space: classical and quantum. Nonlinearity 21:R1–R118CrossRefGoogle Scholar
  33. 33.
    Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (resp) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074CrossRefGoogle Scholar
  34. 34.
    Weinstein A (1973) Normal modes for nonlinear Hamiltonian systems. Inv Math 20:47–57CrossRefGoogle Scholar
  35. 35.
    Weish J, Hauschildt J, Düren R, Schinke R, Koput J, Stamatiadis S, Farantos SC (2000) Saddle-node bifurcations in the spectrum of HOCl. J Chem Phys 112(1):77–93CrossRefGoogle Scholar
  36. 36.
    Wiggins S (1994) Normally hyperbolic invariant manifolds in dynamical systems. Springer, New YorkCrossRefGoogle Scholar
  37. 37.
    Wiggins S, Wiesenfeld L, Jaffé C, Uzer T (2001) Impenetrable barriers in phase-space. Phys Rev Letters 86:5478–5481CrossRefGoogle Scholar
  38. 38.
    Woutersen S, Mu Y, Stock G, Hamm P (2001) Subpicosecond conformational dynamics of small peptides probed by two-dimensional vibrational spectroscopy. Proc Natl Acad Sci USA 98:11,254–11,258CrossRefGoogle Scholar
  39. 39.
    Xie A, van der Meer L, Hoff W, Austin RH (2000) Long-lived amide I vibrational modes in myoglobin. Phys Rev Letters 84:5435–5438CrossRefGoogle Scholar
  40. 40.
    Zewail AH (2000) Femtochemistry: atomic-scale dynamics of the chemical bond. J Phys Chem A 104(24):5660–5694CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CreteIraklionGreece
  2. 2.Institute of Electronic Structure and LaserFoundation for Research and Technology-HellasIraklionGreece

Personalised recommendations