Advertisement

Quantum and Semiclassical Molecular Dynamics

  • Stavros C. Farantos
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

The two formulations of classical mechanics, Lagrangian and Hamiltonian, lead to two expressions of quantum mechanics, the path integral and canonical, respectively. After an introduction to the principles of these two theories, subjects related to calculations of molecular dynamics are discussed. Converting Schrödinger equation into quantum Hamilton’s complex equations, the complexification of the classical Hamilton’s equations, and the quantum and classical autocorrelation functions are described. Semiclassical theories based on periodic orbits, tori and the more general approach of initial value representation method are topics of this chapter. Finally, an introduction of how to numerically solve the Schrödinger equation in a Cartesian coordinate system, which results in a simple form molecular Hamiltonian, is provided.

Keywords

Periodic Orbit Trace Formula Hamiltonian Operator Polyatomic Molecule Monodromy Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baranger M (1958) Simplified quantum-mechanical theory of pressure broadening. Phys Rev 111:481–493CrossRefGoogle Scholar
  2. 2.
    Berry MV, Tabor M (1977) Level clustering in the regular spectrum. Proc Royal Soc Lond A 356:375CrossRefGoogle Scholar
  3. 3.
    Bogomolny WB (1992) On dynamical zeta function. Chaos 2:5CrossRefGoogle Scholar
  4. 4.
    Bohigas O, Giannoni MJ, Schmidt C (1986) In: Quantum chaos and statistical nuclear physics, Lecture Notes in Physics, vol 263. SpringerGoogle Scholar
  5. 5.
    Bramley MJ, Handy NC (1981) Efficient calculation of rovibrational eigenstates of sequentially bonded four-atom molecules. J Chem Phys 98(2):1378–1397CrossRefGoogle Scholar
  6. 6.
    Broeckhove J, Lathouwers L (1993) Quantum dynamics and angular momentum projection. In: Cerjan C (ed) Numerical grid methods and their applications to Schrödinger equation. Kluwer Academic Publishers, Dordrecht, pp 49–56CrossRefGoogle Scholar
  7. 7.
    Corbett JO (1971) A note on angular momentum projection operators. Nucl Phys A 169:426–428CrossRefGoogle Scholar
  8. 8.
    Curtis LJ, Ellis DG (2004) Use of the Einstein-Brillouin-Keller action quantization. Am J Phys 72:1521–1523CrossRefGoogle Scholar
  9. 9.
    Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. McGraw-Hill, New YorkGoogle Scholar
  10. 10.
    Fornberg B (1998) A practical guide to pseudospectral methods. Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Friedrich H, Wintgen D (1989) The Hydrogen atom in a uniform magnetic field - an example of chaos. Phys Rep 183:37CrossRefGoogle Scholar
  12. 12.
    Gaspard P, Burghardt I (1997) Emergence of classical periodic orbits and chaos in intramolecular and dissociation dynamics. Adv Chem Phys 101:491–621Google Scholar
  13. 13.
    Goldfield EM, Gray SK (2007) Quantum dynamics of chemical reactions. Adv Chem Phys 136:1–37Google Scholar
  14. 14.
    Gomez Llorente JM, Taylor HS (1989) Spectra in the chaotic region: a classical analysis for the sodium trimer. J Chem Phys 91:953–962CrossRefGoogle Scholar
  15. 15.
    Gomez Llorente JM, Pollak E (1992) Classical dynamics methods for high energy vibrational spectroscopy. Annu Rev Phys Chem 43:91–126CrossRefGoogle Scholar
  16. 16.
    Guantes R, Farantos SC (1999) High order finite difference algorithms for solving the Schrödinger equation in molecular dynamics. J Chem Phys 111:10,827–10,835CrossRefGoogle Scholar
  17. 17.
    Guantes R, Farantos SC (2000) High order finite difference algorithms for solving the Schrödinger equation in molecular dynamics. II. periodic variables. J Chem Phys 113:10429–10437CrossRefGoogle Scholar
  18. 18.
    Gutzwiller MC (1990) Chaos in Classical and Quantum Mechanics, vol 1. Springer, New YorkGoogle Scholar
  19. 19.
    Heller EJ (1984) Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits. Phys Rev Lett 53(16):1515–1518CrossRefGoogle Scholar
  20. 20.
    Heller EJ, Davis MJ (1980) Molecular overtone bandwidths from classical trajectories. J Phys Chem 84:1999–2000CrossRefGoogle Scholar
  21. 21.
    Kosloff R (1996) Quantum molecular dynamics on grids. In: Wyatt RE, Zhang J (eds) Dynamics of molecules and chemical reactions. Marcel Dekker Inc, New York, pp 185–230Google Scholar
  22. 22.
    Landau LD, Lifshitz EM (1976a) Mechanics, 3rd edn. Pergamon Press, OxfordGoogle Scholar
  23. 23.
    Landau LD, Lifshitz EM (1976b) Quantum mechanics, 3rd edn. Pergamon Press, OxfordGoogle Scholar
  24. 24.
    McDonald SW (1988) Phase-space representations of wave equations with applications to the eikonal approximation for short-wavelength waves. Phys Rep 158:337CrossRefGoogle Scholar
  25. 25.
    Meyer KR, Hall GR, Offin D (2009) Introduction to Hamiltonian dynamical systems and the N-Body problem, vol 90, 2nd edn., Applied mathematical sciences.Springer, New YorkGoogle Scholar
  26. 26.
    Miller WH (1975) Semiclassical quantization of nonseparable systems: a new look at periodic orbit theory. J Chem Phys 63:996CrossRefGoogle Scholar
  27. 27.
    Miller WH (2001) The semiclassical initial value representation: a potentially practical way for adding quantum effects to classical molecular dynamics simulations. J Phys Chem A 105:2942–2955CrossRefGoogle Scholar
  28. 28.
    Miller WH (2009) Electronically nonadiabatic dynamics via semiclassical initial value methods. J Phys Chem A 113:1405–1415CrossRefGoogle Scholar
  29. 29.
    Prosmiti R, Farantos SC, Taylor HS (1994) A periodic orbit approach to spectroscopy and dynamics of SO\(_2\):C̃ \(^1\)B\(_2 \rightarrow \)\(^1\)A\(_1\). Mol Phys 82:1213–1232CrossRefGoogle Scholar
  30. 30.
    Suarez J, Farantos SC, Stamatiadis S, Lathouwers L (2009) A method for solving the molecular Schrödinger equation in Cartesian coordinates via angular momentum projection operators. Comput Phys Commun 180:2025–2033CrossRefGoogle Scholar
  31. 31.
    Waterland RL, Yuan JM, Martens CC, Gillilan RE, Reinhardt WP (1988) Classical-quantum correspondence in the presence of global chaos. Phys Rev Lett 61:2733CrossRefGoogle Scholar
  32. 32.
    Weissman Y, Jortner J (1982) Quantum manifestations of classical stochasticity. II. dynamics of wave packets of bound states. J Chem Phys 77:1486CrossRefGoogle Scholar
  33. 33.
    Wigner EP (1959) Group theory. Academic Press, LondonGoogle Scholar
  34. 34.
    Zare RN (1988) Angular momentum, understanding spatial aspects in chemistry and physics. Wiley-Interscience, New YorkGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CreteIraklionGreece
  2. 2.Institute of Electronic Structure and LaserFoundation for Research and Technology-HellasIraklionGreece

Personalised recommendations