Multi-command Tactile and Bone-Conduction-Auditory Brain-Computer Interface

  • Tomasz M. Rutkowski
  • Hiromu Mori
  • Koichi Mori
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


We study the extent to which vibrotactile stimuli delivered to the head of a user can serve as a platform for a brain computer interface (BCI) paradigm. Six and ten head position setups are used to evoke combined somatosensory and auditory (via bone-conduction effect) brain responses, in order to define a multimodal tactile and bone-conduction-auditory brain computer interface (tbcaBCI) suitable for ALS-TLS patients with bad vision and suffering from an ear-blocking-syndrome. Experimental results on users performing online tbcaBCI, using stimuli with a moderately fast stimulus-onset-asynchrony (SOA), validate the tbcaBCI paradigm, while the feasibility of the concept is illuminated through information-transfer-rate analyses.


Tactile and auditory BCI  Somatosensory evoked potentials (SEP) Auditory evoked potentials (AEP) 



This research was supported in part by the Strategic Information and Communications R&D Promotion Programme no. 121803027 of The Ministry of Internal Affairs and Communication in Japan, and by KAKENHI, the Japan Society for the Promotion of Science grant no. 12010738. We also acknowledge the technical support from YAMAHA Sound and IT Development Division in Hamamatsu, Japan.


  1. Gelinas D (2007) Living with ALS—managing your symptoms and treatment. Online brochure, The ALS Association. URL
  2. Halder S, Rea M, Andreoni R, Nijboer F, Hammer E, Kleih S, Birbaumer N, Kiibler A (2009) An auditory oddball brain–computer interface for binary choices. Clin Neurophysiol 121(4):516–523. doi: 10.1016/j.clinph.2009.11.087. URL
  3. Lelievre Y, Rutkowski TM (2013) Novel virtual moving sound-based spatial auditory brain-computer interface paradigm. In: Proceedings of the 6th international IEEE EMBS Conference on neural engineering. EMBS, IEEE Press, Sheraton San Diego Hotel & Marina, San Diego, CA, USA, pp 9–12. URL
  4. Mori H, Makino S, Rutkowski TM (2013a) Multi-command chest tactile brain computer interface for small vehicle robot navigation. In: Imamura K, Usui S, Shirao T, Kasamatsu T, Schwabe L, Zhong N (eds) Brain and health informatics. Lecture notes in computer science, vol 8211. Springer, Berlin, pp 469–478. doi:10.1007/978-3-319-02753-1_47. URL
  5. Mori H, Matsumoto Y, Kryssanov V, Cooper E, Ogawa H, Makino S, Struzik Z, Rutkowski TM (2013b) Multi-command tactile brain computer interface: a feasibility study. In: Oakley I, Brewster S (eds) Haptic and audio interaction design 2013 (HAID 2013). Lecture notes in computer science, vol 7989. Springer, Berlin, pp 50–59. URL
  6. Mori H, Matsumoto Y, Struzik ZR, Mori K, Makino S, Mandic D, Rutkowski TM (2013c) Multi-command tactile and auditory brain computer interface based on head position stimulation. In: Proceedings of the fifth international brain-computer interface meeting 2013. Graz University of Technology Publishing House, Austria, Asilomar Conference Center, Pacific Grove, CA, USA, p Article ID: 095. doi: 10.3217/978-4-83452-381-5/095. URL
  7. Muller-Putz G, Scherer R, Neuper C, Pfurtscheller G (2006) Steady-state so-matosensory evoked potentials: suitable brain signals for brain-computer interfaces? IEEE Trans Neural Syst Rehabil Eng 14(1):30–37. doi: 10.1109/TNSRE.2005.863842 CrossRefGoogle Scholar
  8. Rutkowski TM, Cichocki A, Mandic DP (2009) Spatial auditory paradigms for brain computer/machine interfacing. In: International workshop on the principles and applications of spatial hearing 2009 (IWPASH 2009)—proceedings of the international workshop, Miyagi-Zao Royal Hotel, Sendai, Japan, p P5Google Scholar
  9. Schreuder M, Blankertz B, Tangermann M (2010) A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue. PLoS ONE 5(4):e9813. doi: 10.1371/journal.pone.0009813. URL
  10. Severens M, Farquhar J, Duysens J, Desain P (2013) A multi-signature brain-computer interface: use of transient and steady-state responses. J Neural Eng 10(2):026005. URL
  11. van der Waal M, Severens M, Geuze J, Desain P (2012) Introducing the tactile speller: an ERP-based brain–computer interface for communication. J Neural Eng 9(4):045002. doi: 10.1088/1741-2560/9/4/045002. URL

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Tomasz M. Rutkowski
    • 1
    • 2
  • Hiromu Mori
    • 3
  • Koichi Mori
    • 4
  1. 1.Life Science Center of TARAUniversity of TsukubaTsukubaJapan
  2. 2.RIKEN Brain Science InstituteWako-shiJapan
  3. 3.Computer Science DepartmentUniversity of TsukubaTsukubaJapan
  4. 4.Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawaJapan

Personalised recommendations