2D Subquadratic Separable Distance Transformation for Path-Based Norms

  • David Coeurjolly
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8668)


In many applications, separable algorithms have demonstrated their efficiency to perform high performance and parallel volumetric computations, such as distance transformation or medial axis extraction. In the literature, several authors have discussed about conditions on the metric to be considered in a separable approach. In this article, we present generic separable algorithms to efficiently compute Voronoi maps and distance transformations for a large class of metrics. Focusing on path based norms (chamfer masks, neighborhood sequences, ...), we detail a subquadratic algorithm to compute such volumetric transformation in dimension 2. More precisely, we describe a O(log2 m·N 2) algorithm for shapes in a N×N domain with chamfer norm of size m.


Digital Geometry Distance Transformation Path-based Norms 


  1. 1.
    DGtal: Digital geometry tools and algorithms library,
  2. 2.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34(3), 344–371 (1986)CrossRefGoogle Scholar
  3. 3.
    Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear time euclidean distance transform algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(5), 529–533 (1995)CrossRefGoogle Scholar
  4. 4.
    Coeurjolly, D.: Volumetric Analysis of Digital Objects Using Distance Transformation: Performance Issues and Extensions. In: Köthe, U., Montanvert, A., Soille, P. (eds.) WADGMM 2010. LNCS, vol. 7346, pp. 82–92. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Danielsson, P.E.: Euclidean distance mapping. Computer Graphics and Image Processing 14, 227–248 (1980)CrossRefGoogle Scholar
  6. 6.
    Fouard, C., Malandain, G.: 3-D chamfer distances and norms in anisotropic grids. Image and Vision Computing 23, 143–158 (2005)CrossRefGoogle Scholar
  7. 7.
    Hirata, T.: A unified linear-time algorithm for computing distance maps. Information Processing Letters 58(3), 129–133 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann (2004)Google Scholar
  9. 9.
    Maurer, C., Qi, R., Raghavan, V.: A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 265–270 (2003)CrossRefGoogle Scholar
  10. 10.
    Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. In: Mathematical Morphology and its Applications to Image and Signal Processing, pp. 331–340. Kluwer (2000)Google Scholar
  11. 11.
    Mukherjee, J., Das, P.P., Kumar, M.A., Chatterji, B.N.: On approximating euclidean metrics by digital distances in 2D and 3D. Pattern Recognition Letters 21(6-7), 573–582 (2000)CrossRefGoogle Scholar
  12. 12.
    Normand, N., Évenou, P.: Medial axis lookup table and test neighborhood computation for 3D chamfer norms. Pattern Recognition 42(10), 2288–2296 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Normand, N., Strand, R., Evenou, P.: Digital distances and integer sequences. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 169–179. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Ragnemalm, I.: Contour processing distance transforms, pp. 204–211. World Scientific (1990)Google Scholar
  15. 15.
    Rosenfeld, A., Pfaltz, J.: Distance functions on digital pictures. Pattern Recognition 1, 33–61 (1968)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Rosenfeld, A., Pfaltz, J.: Sequential operations in digital picture processing. Journal of the ACM (JACM) 13, 471–494 (1966), CrossRefzbMATHGoogle Scholar
  17. 17.
    Strand, R.: Distance Functions and Image Processing on Point-Lattices With Focus on the 3D Face- and Body-centered Cubic Grids. Phd thesis, Uppsala Universitet (2008)Google Scholar
  18. 18.
    Thiel, E.: Géométrie des distances de chanfrein. Ph.D. thesis, Aix-Marseille 2 (2001)Google Scholar
  19. 19.
    Verwer, B.J.H., Verbeek, P.W., Dekker, S.T.: An efficient uniform cost algorithm applied to distance transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(4), 425–429 (1989)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David Coeurjolly
    • 1
  1. 1.CNRS, LIRIS, UMR5205France

Personalised recommendations