Advertisement

On Finding Spherical Geodesic Paths and Circles in ℤ3

  • Ranita Biswas
  • Partha Bhowmick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8668)

Abstract

A discrete spherical geodesic path between two voxels s and t lying on a discrete sphere is a/the 1-connected shortest path from s to t, comprising voxels of the discrete sphere intersected by the real plane passing through s, t, and the center of the sphere. We show that the set of sphere voxels intersected by the aforesaid real plane always contains a 1-connected cycle passing through s and t, and each voxel in this set lies within an isothetic distance of \(\frac32\) from the concerned plane. Hence, to compute the path, the algorithm starts from s, and iteratively computes each voxel p of the path from the predecessor of p. A novel number-theoretic property and the 48-symmetry of discrete sphere are used for searching the 1-connected voxels comprising the path. The algorithm is output-sensitive, having its time and space complexities both linear in the length of the path. It can be extended for constructing 1-connected discrete 3D circles of arbitrary orientations, specified by a few appropriate input parameters. Experimental results and related analysis demonstrate its efficiency and versatility.

Keywords

Discrete sphere geodesic path geometry of numbers discrete 3D circles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balasubramanian, M., Polimeni, J.R., Schwartz, E.L.: Exact geodesics and shortest paths on polyhedral surfaces. IEEE TPAMI 31, 1006–1016 (2009)CrossRefGoogle Scholar
  2. 2.
    Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity—A review. Discrete Appl. Math. 155, 468–495 (2007)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bülow, T., Klette, R.: Digital curves in 3D space and a linear-time length estimation algorithm. IEEE TPAMI 24, 962–970 (2002)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Han, Y.: Shortest paths on a polyhedron. In: Proc. SoCG, pp. 360–369 (1990)Google Scholar
  5. 5.
    Coeurjolly, D., Miguet, S., Tougne, L.: 2D and 3D visibility in discrete geometry: An application to discrete geodesic paths. PRL 25, 561–570 (2004)CrossRefGoogle Scholar
  6. 6.
    Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. GMIP 57, 453–461 (1995)Google Scholar
  7. 7.
    Coxeter, H.S.M.: Regular Polytopes. Dover Pub. (1973)Google Scholar
  8. 8.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA, 8431–8435 (1998)Google Scholar
  9. 9.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)Google Scholar
  10. 10.
    Li, F., Klette, R.: Analysis of the rubberband algorithm. Image Vision Comput. 25, 1588–1598 (2007)CrossRefGoogle Scholar
  11. 11.
    Martínez, D., Velho, L., Carvalho, P.C.: Computing geodesics on triangular meshes. Computers & Graphics 29, 667–675 (2005)CrossRefGoogle Scholar
  12. 12.
    Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput. 16, 647–668 (1987)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Polthier, K., Schmies, M.: Straightest geodesics on polyhedral surfaces. In: ACM SIGGRAPH 2006 Courses, pp. 30–38 (2006)Google Scholar
  14. 14.
    Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM TOG 24, 553–560 (2005)CrossRefGoogle Scholar
  15. 15.
    Toutant, J.L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties. Discrete Appl. Math. 161, 2662–2677 (2013)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Xin, S.Q., Wang, G.J.: Improving Chen and Han’s algorithm on the discrete geodesic problem. ACM TOG 28, Art. 104 (2009)Google Scholar
  17. 17.
    Xin, S.Q., Ying, X., He, Y.: Constant-time all-pairs geodesic distance query on triangle meshes. In: Proc. I3D 2012, pp. 31–38 (2012)Google Scholar
  18. 18.
    Ying, X., Wang, X., He, Y.: Saddle vertex graph (SVG): A novel solution to the discrete geodesic problem. ACM TOG 32, Art. 170 (2013)Google Scholar
  19. 19.
    Ying, X., Xin, S.Q., He, Y.: Parallel Chen-Han (PCH) algorithm for discrete geodesics. ACM TOG 33, Art. 9 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ranita Biswas
    • 1
  • Partha Bhowmick
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations