Digital Geometry from a Geometric Algebra Perspective

  • Lilian Aveneau
  • Laurent Fuchs
  • Eric Andres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8668)


To model Euclidean spaces in computerized geometric calculations, the Geometric Algebra framework is becoming popular in computer vision, image analysis, etc. Focusing on the Conformal Geometric Algebra, the claim of the paper is that this framework is useful in digital geometry too. To illustrate this, this paper shows how the Conformal Geometric Algebra allow to simplify the description of digital objects, such as k-dimensional circles in any n-dimensional discrete space. Moreover, the notion of duality is an inherent part of the Geometric Algebra. This is particularly useful since many algorithms are based on this notion in digital geometry. We illustrate this important aspect with the definition of k-dimensional spheres.


Digital Geometry Geometric Algebra Conformal Model Digital Object 


  1. 1.
    Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical Models and Image Processing 59(5), 302–309 (1997)CrossRefGoogle Scholar
  2. 2.
    Andres, E., Jacob, M.-A.: The discrete analytical hyperspheres. IEEE Transactions on Visualization and Computer Graphics 3(1), 75–86 (1997)CrossRefGoogle Scholar
  3. 3.
    Aragon-Camarasa, G., Aragon-Gonzalez, G., Aragon, J.L., Rodriguez-Andrade, M.A.: Clifford Algebra with Mathematica. ArXiv e-prints (October 2008)Google Scholar
  4. 4.
    Aveneau, L., Andres, E., Mora, F.: Expressing discrete geometry using the conformal model. Presented at AGACSE 2012, La Rochelle, France (2012),
  5. 5.
    Bayro-Corrochano, E., Scheuermann, G. (eds.): Geometric Algebra Computing in Engineering and Computer Science. Springer (2010)Google Scholar
  6. 6.
    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object Oriented Approach to Geometry. Morgan Kauffmann Publishers (2007)Google Scholar
  7. 7.
    Dorst, L., Lasenby, J. (eds.): Guide to Geometric Algebra in Practice (Proceedings of AGACSE 2010). Springer (2011)Google Scholar
  8. 8.
    Fontijne, D., Dorst, L., Bouma, T., Mann, S.: GAviewer, interactive visualization software for geometric algebra (2010), Downloadable at
  9. 9.
    Fuchs, L., Théry, L.: Implementing geometric algebra products with binary trees. Advances in Applied Clifford Algebra (published online first, 2014),
  10. 10.
    Hestenes, D.: New Foundations for Classical Mechanics. D. Reidel Publ. Co., Dordrecht (1986)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hildenbrand, D.: Foundations of Geometric Algebra Computing. Geometry and Computing, vol. 8. Springer (2013)Google Scholar
  12. 12.
    McDonald, A.: A survey of geometric algebra and geometric calculus (2013), (last checked February 2014)
  13. 13.
    Perwass, C.: Geometric Algebra with Applications in Engineering. Springer (2009)Google Scholar
  14. 14.
    Reveillès, J.-P.: Géométrie Discrète, calculs en nombres entiers et algorithmique. Thèse d’état, Université Louis Pasteur, Strasbourg, France (1991)Google Scholar
  15. 15.
    Sommer, G.: Geometric computing with Clifford algebras: theoretical foundations and applications in computer vision and robotics. Springer (2001)Google Scholar
  16. 16.
    Tajine, M., Ronse, C.: Hausdorff discretizations of algebraic sets and diophantine sets. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 99–110. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Wareham, R., Cameron, J., Lasenby, J.: Applications of conformal geometric algebra in computer vision and graphics. In: Li, H., J. Olver, P., Sommer, G. (eds.) IWMM-GIAE 2004. LNCS, vol. 3519, pp. 329–349. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lilian Aveneau
    • 1
  • Laurent Fuchs
    • 1
  • Eric Andres
    • 1
  1. 1.Laboratoire XLIM-SIC UMR CNRS 7252, Université de PoitiersFuturoscope Chasseneuil CedexFrance

Personalised recommendations