Binary Pictures with Excluded Patterns

  • Daniela Battaglino
  • Andrea Frosini
  • Veronica Guerrini
  • Simone Rinaldi
  • Samanta Socci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8668)

Abstract

The notion of a pattern within a binary picture (polyomino) has been introduced and studied in [3], and resembles the notion of pattern containment within permutations. The main goal of this paper is to extend the studies of [3] by adopting a more geometrical approach: we use the notion of pattern avoidance in order to recognize or describe families of polyominoes defined by means of geometrical constraints or combinatorial properties. Moreover, we extend the notion of pattern in a polyomino, by introducing generalized polyomino patterns, so that to be able to describe more families of polyominoes known in the literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barcucci, E., Frosini, A., Rinaldi, S.: On directed-convex polyominoes in a rectangle. Discrete Math. 298(1-3), 62–78 (2005)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Battaglino, D.: Enumeration of polyominoes defined in terms of pattern avoidance or convexity constraints, PhD thesis (University of Sienna), arXiv:1405.3146v1 (2014)Google Scholar
  3. 3.
    Battaglino, D., Bouvel, M., Frosini, A., Rinaldi, S.: Permutation classes and polyomino classes with excluded submatrices. ArXiv 1402.2260 (2014)Google Scholar
  4. 4.
    Battaglino, D., Bouvel, M., Frosini, A., Rinaldi, S., Socci, S., Vuillon, L.: Pattern avoiding polyominoes. In: Proceedings di Italian Conference Theoretical Computer Science, Palermo, Settembre 9-11 (2013)Google Scholar
  5. 5.
    Bona, M.: Combinatorics of permutations. Chapman-Hall and CRC Press (2004)Google Scholar
  6. 6.
    Brändén, P., Claesson, A.: Mesh patterns and the expansion of permutation statistics as sums of permutation patterns. Electr. J. of Combin. 18(2) (2011) (The Zeilberger Festschrift volume)Google Scholar
  7. 7.
    Brocchi, S., Frosini, A., Pinzani, R., Rinaldi, S.: A tiling system for the class of L-convex polyominoes. Theor. Comput. Sci. 457, 73–81 (2013)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Castiglione, G., Restivo, A.: Ordering and Convex Polyominoes. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 128–139. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Castiglione, G., Frosini, A., Munarini, E., Restivo, A., Rinaldi, S.: Combinatorial aspects of L-convex polyominoes. European J. Combin. 28, 1724–1741 (2007)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Castiglione, G., Frosini, A., Restivo, A., Rinaldi, S.: Enumeration of L-convex polyominoes by rows and columns. Theor. Comput. Sci. 347, 336–352 (2005)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Klazar, M.: On abab-free and abba-free sets partitions. European J. Combin. 17, 53–68 (1996)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Knuth, D.E.: The Art of Computer Programming, 2nd edn. Volume 1: Fundamental algorithms; Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley Publishing Co., Reading (1975)Google Scholar
  13. 13.
    Rowland, E.: Pattern avoidance in binary trees. J. Combin. Theory Ser. A 117, 741–758 (2010)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Sagan, B.E.: Pattern avoidance in set partitions. Ars Combin. 94, 79–96 (2010)MATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniela Battaglino
    • 1
  • Andrea Frosini
    • 2
  • Veronica Guerrini
    • 1
  • Simone Rinaldi
    • 1
  • Samanta Socci
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversità di SienaSienaItaly
  2. 2.Dipartimento di Sistemi e InformaticaUniversità di FirenzeFirenzeItaly

Personalised recommendations