Advertisement

Uniqueness Regions under Sets of Generic Projections in Discrete Tomography

  • Paolo Dulio
  • Andrea Frosini
  • Silvia M. C. Pagani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8668)

Abstract

In Discrete Tomography, objects are reconstructed by means of their projections along certain directions. It is known that, for any given lattice grid, special sets of four valid projections exist that ensure uniqueness of reconstruction in the whole grid. However, in real applications, some physical or mechanical constraints could prevent the use of such theoretical uniqueness results, and one must employ projections fitting some further constraints. It turns out that global uniqueness cannot be guaranteed, even if, in some special areas included in the grid, uniqueness might be still preserved.

In this paper we address such a question of local uniqueness. In particular, we wish to focus on the problem of characterizing, in a sufficiently large lattice rectangular grid, the sub-region which is uniquely determined under a set S of generic projections. It turns out that the regions of local uniqueness consist of some curious twisting of rectangular areas. This deserves a special interest even from the pure combinatorial point of view, and can be explained by means of numerical relations among the entries of the employed directions.

Keywords

Discrete Tomography lattice grid projection uniqueness region 

References

  1. 1.
    Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex polyominoes from horizontal and vertical projections. Theoret. Comput. Sci. 155(2), 321–347 (1996) ISSN 0304-3975Google Scholar
  2. 2.
    Batenburg, K.J., Palenstijn, W.J., Balázs, P., Sijbers, J.: Dynamic Angle Selection in Binary Tomography. Comput. Vis. Image Underst. 117(4), 306–318 (2013) ISSN 1077-3142Google Scholar
  3. 3.
    Brunetti, S., Dulio, P., Peri, C.: Discrete Tomography determination of bounded lattice sets from four X-rays. Discrete Applied Mathematics 161(15), 2281–2292 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Brunetti, S., Dulio, P., Peri, C.: On the Non-additive Sets of Uniqueness in a Finite Grid. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 288–299. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Chandra, S., Svalbe, I.D., Guédon, J.-P.: An Exact, Non-iterative Mojette Inversion Technique Utilising Ghosts. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 401–412. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Fishburn, P.C., Shepp, L.A.: Sets of uniqueness and additivity in integer lattices. In: Discrete Tomography. Appl. Numer. Harmon. Anal., pp. 35–58. Birkhäuser, Boston (1999)CrossRefGoogle Scholar
  7. 7.
    Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of reconstructing lattice sets from their X-rays. Discrete Math. 202(1-3), 45–71 (1999) ISSN 0012-365XGoogle Scholar
  8. 8.
    Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew. Math. 534, 119–128 (2001) ISSN 0075-4102Google Scholar
  9. 9.
    Kuba, A., Herman, G.T.: Discrete tomography: a historical overview. In: Discrete Tomography. Appl. Numer. Harmon. Anal., pp. 3–34. Birkhäuser, Boston (1999)CrossRefGoogle Scholar
  10. 10.
    Lorentz, G.G.: A problem of plane measure. Amer. J. Math. 71, 417–426 (1949) ISSN 0002-9327Google Scholar
  11. 11.
    Normand, N., Kingston, A., Évenou, P.: A Geometry Driven Reconstruction Algorithm for the Mojette Transform. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 122–133. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math. 9, 371–377 (1957) ISSN 0008-414XGoogle Scholar
  13. 13.
    Servieres, M., Normand, N., Guédon, J.-P.V., Bizais, Y.: The Mojette transform: Discrete angles for tomography. Electronic Notes in Discrete Mathematics 20, 587–606 (2005)CrossRefGoogle Scholar
  14. 14.
    Varga, L., Balázs, P., Nagy, A.: Direction-dependency of Binary Tomographic Reconstruction Algorithms. Graph. Models 73(6), 365–375 (2011) ISSN 1524-0703Google Scholar
  15. 15.
    Varga, L., Balázs, P., Nagy, A.: Projection Selection Dependency in Binary Tomography. Acta Cybern. 20(1), 167–187 (2011) ISSN 0324-721XGoogle Scholar
  16. 16.
    Varga, L., Nyúl, L.G., Nagy, A., Balázs, P.: Local Uncertainty in Binary Tomographic Reconstruction. In: Proceedings of the IASTED International Conference on Signal Processing, Pattern Recognition and Applications, IASTED. ACTA Press, Calgary (2013) ISBN 978-0-88986-954-7Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Paolo Dulio
    • 1
  • Andrea Frosini
    • 2
  • Silvia M. C. Pagani
    • 1
  1. 1.Dipartimento di Matematica “F. Brioschi”Politecnico di MilanoMilanoItaly
  2. 2.Dipartimento di Matematica e Informatica “U. Dini”Università di FirenzeFirenzeItaly

Personalised recommendations