An Entropic Perturbation Approach to TV-Minimization for Limited-Data Tomography

  • Andreea Deniţiu
  • Stefania Petra
  • Claudius Schnörr
  • Christoph Schnörr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8668)


The reconstruction problem of discrete tomography is studied using novel techniques from compressive sensing. Recent theoretical results of the authors enable to predict the number of measurements required for the unique reconstruction of a class of cosparse dense 2D and 3D signals in severely undersampled scenarios by convex programming. These results extend established ℓ1-related theory based on sparsity of the signal itself to novel scenarios not covered so far, including tomographic projections of 3D solid bodies composed of few different materials. As a consequence, the large-scale optimization task based on total-variation minimization subject to tomographic projection constraints is considerably more complex than basic ℓ1-programming for sparse regularization. We propose an entropic perturbation of the objective that enables to apply efficient methodologies from unconstrained optimization to the perturbed dual program. Numerical results validate the theory for large-scale recovery problems of integer-valued functions that exceed the capacity of the commercial MOSEK software.


discrete tomography compressed sensing underdetermined systems of linear equations cosparsity phase transitions total variation entropic perturbation convex duality convex programming 


  1. 1.
    Nam, S., Davies, M., Elad, M., Gribonval, R.: The Cosparse Analysis Model and Algorithms. Applied and Computational Harmonic Analysis 34(1), 30–56 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Deniţiu, A., Petra, S., Schnörr, C., Schnörr, C.: Phase Transitions and Cosparse Tomographic Recovery of Compound Solid Bodies from Few Projections. ArXiv e-prints (November 2013)Google Scholar
  3. 3.
    Ferris, M.C., Mangasarian, O.L.: Finite perturbation of convex programs. Appl. Math. Optim. 23, 263–273 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Fang, S.C., Tsao, H.S.J.: Linear programming with entropic perturbation. Math. Meth. of OR 37(2), 171–186 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Rockafellar, R., Wets, R.J.B.: Variational Analysis, 2nd edn. Springer (2009)Google Scholar
  6. 6.
    Mangasarian, O.L.: Uniqueness of Solution in Linear Programming. Linear Algebra and its Applications 25, 151–162 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Fang, S.C., Tsao, H.S.J.: On the entropic perturbation and exponential penalty methods for linear programming. J. Optim. Theory Appl. 89, 461–466 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cominetti, R., San Martin, J.: Asymptotic analysis of the exponential penalty trajectory in linear programming. Math. Progr. 67, 169–187 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Tseng, P.: Convergence and Error Bound for Perturbation of Linear Programs. Computational Optimization and Applications 13(1-3), 221–230 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bonnans, J.F., Gilbert, Lemaréchal, C., Sagastizábal, C.: Numerical Optimization – Theoretical and Practical Aspects. Springer, Berlin (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andreea Deniţiu
    • 1
    • 2
  • Stefania Petra
    • 1
  • Claudius Schnörr
    • 2
  • Christoph Schnörr
    • 1
  1. 1.Image and Pattern Analysis GroupUniversity of HeidelbergGermany
  2. 2.Fakultät für Informatik und MathematikHochschule MünchenMünchenGermany

Personalised recommendations