Back-Projection Filtration Inversion of Discrete Projections

  • Imants Svalbe
  • Andrew Kingston
  • Nicolas Normand
  • Henri Der Sarkissian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8668)


We present a new, robust discrete back-projection filtration algorithm to reconstruct digital images from close-to-minimal sets of arbitrarily oriented discrete projected views. The discrete projections are in the Mojette format, with either Dirac or Haar pixel sampling. The strong aliasing in the raw image reconstructed by direct back-projection is corrected via a de-convolution using the Fourier transform of the discrete point-spread function (PSF) that was used for the forward projection. The de-convolution is regularised by applying an image-sized digital weighting function to the raw PSF. These weights are obtained from the set of back-projected points that partially tile the image area to be reconstructed. This algorithm produces high quality reconstructions at and even below the Katz sufficiency limit, which defines a minimal criterion for projection sets that permit a unique discrete reconstruction for noise-free data. As the number of input discrete projected views increases, the PSF more fully tiles the discrete region to be reconstructed, the de-convolution and its weighting mask become progressively less important. This algorithm then merges asymptotically with the perfect reconstruction method found by Servières et al in 2004. However the Servières approach, for which the PSF must exactly tile the full area of the reconstructed image, requires O(N 2) uniformly distributed projection angles to reconstruct N ×N data. The independence of each (back-) projected view makes our algorithm robust to random, symmetrically distributed noise. We present, as results, images reconstructed from sets of O(N) projected view angles that are either uniformly distributed, randomly selected, or clustered about orthogonal axes.


Discrete tomography image reconstruction from discrete projections inverse problems 


  1. 1.
    Chandra, S., Svalbe, I.D.: Exact image representation via a number-theoretic Radon transform. IET Computer Vision (accepted November 2013)Google Scholar
  2. 2.
    Chandra, S., Svalbe, I.D., Guédon, J., Kingston, A.M., Normand, N.: Recovering missing slices of the discrete Fourier transform using ghosts. IEEE Trans. Image Process. 21(10), 4431–4441 (2012)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Guédon, J., Normand, N.: Direct Mojette Transform. In: Guédon, J. (ed.) The Mojette Transform: Theory and Applications, pp. 37–60. ISTE-WILEY (2009)Google Scholar
  4. 4.
    Herman, G.T., Kuba, A. (eds.): Advances in Discrete Tomography and its Applications. Birkhäuser, Boston (2007)zbMATHGoogle Scholar
  5. 5.
    Hou, W., Zhang, C.: Parallel-Beam CT reconstruction based on Mojette transform and compressed sensing. Int. J. of Computer and Electrical Eng. 5(1), 83–87 (2013)CrossRefGoogle Scholar
  6. 6.
    Katz, M.B.: Questions of uniqueness and resolution in reconstruction from projections. Springer, Berlin (1978)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kingston, A.M., Svalbe, I.D.: Generalised finite Radon transform for N×N images. Image and Vision Computing 25(10), 1620–1630 (2007)CrossRefGoogle Scholar
  8. 8.
    Lun, D., Hsung, T., Shen, T.: Orthogonal discrete periodic Radon transforms, Parts I & II. Signal Processing 83(5), 941–971 (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Matúš, F., Flusser, J.: Image representation via a finite Radon transform. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 996–1006 (1993)CrossRefGoogle Scholar
  10. 10.
    Normand, N., Kingston, A., Évenou, P.: A Geometry Driven Reconstruction Algorithm for the Mojette Transform. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 122–133. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Servières, M., Idier, J., Normand, N., Guédon, J.: Conjugate gradient Mojette reconstruction. In: SPIE Medical Imaging, pp. 2067–2074. SPIE (2005)Google Scholar
  12. 12.
    Servières, M., Normand, N., Guédon, J.: Interpolation method for the Mojette transform. In: SPIE Medical Imaging, SPIE, San Diego, CA (2006)Google Scholar
  13. 13.
    Svalbe, I.D., Kingston, A.M., Guédon, J., Normand, N., Chandra, S.: Direct Inversion of Mojette Projections. In: Int. Conf. on Image Processing, Melbourne, Australia, pp. 1036–1040 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Imants Svalbe
    • 1
  • Andrew Kingston
    • 2
  • Nicolas Normand
    • 3
  • Henri Der Sarkissian
    • 3
    • 4
  1. 1.School of PhysicsMonash UniversityMelbourneAustralia
  2. 2.Research School of Physical SciencesAustralian National UniversityCanberraAustralia
  3. 3.LUNAM Université, Université de Nantes, IRCCyN UMR CNRS 6597NantesFrance
  4. 4.KeosysSaint-HerblainFrance

Personalised recommendations