Application of Supervisory Control Theory to Swarms of e-puck and Kilobot Robots

  • Yuri K. Lopes
  • André B. Leal
  • Tony J. Dodd
  • Roderich Groß
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8667)


At present, most of the source code controlling swarm robotic systems is developed in an ad-hoc manner. This can make it difficult to maintain these systems and to guarantee that they will accomplish the desired behaviour. Formal approaches can help to solve these issues. However, they do not usually guarantee that the final source code will match the modelled specification. To address this problem, our research explores the application of formal approaches to both synthesise high-level controllers and automatically generate control software for a swarm of robots. The formal approach used in this paper is supervisory control theory. The approach is successfully validated in two experiments using up to 42 Kilobot robots and up to 26 e-puck robots.


Formal Approach Parallel Composition Discrete Event System Uncontrollable Event Deterministic Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013)CrossRefGoogle Scholar
  2. 2.
    Brambilla, M., Pinciroli, C., Birattari, M., Dorigo, M.: Property-driven design for swarm robotics. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 139–146 (2012)Google Scholar
  3. 3.
    Dixon, C., Winfield, A., Fisher, M.: Towards temporal verification of emergent behaviours in swarm robotic systems. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 336–347. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Gordon-Spears, D., Kiriakidis, K.: Reconfigurable robot teams: modeling and supervisory control. IEEE Transactions on Control Systems Technology 12(5), 763–769 (2004)CrossRefGoogle Scholar
  5. 5.
    Leal, A.B., Cruz, D.L.L., Hounsell, M.S.: PLC-based implementation of local modular supervisory control for manufacturing systems. In: Aziz, F.A. (ed.) Manufacturing System, pp. 159–182. InTech (2012)Google Scholar
  6. 6.
    Liu, J., Darabi, H.: Ladder logic implementation of Ramdge-Wonham supervisory controller. In: Proc. of the WODES, pp. 383–392 (2002)Google Scholar
  7. 7.
    Lopes, Y.K., Leal, A.B., Dodd, T.J., Groß, R.: Online supplementary material (2014),
  8. 8.
    Lopes, Y.K., Leal, A.B., Rosso, R.S.U., Harbs, E.: Local modular supervisory implementation in micro-controller. In: Proc. of the 9th International Conference of Modeling, Optimization and Simulation (MOSIM 2012), vol. 9 (2012)Google Scholar
  9. 9.
    Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: A case study in collaborative distributed manipulation. Int. Journal of Robotics Research 23(4-5), 415–436 (2004)CrossRefGoogle Scholar
  10. 10.
    Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1, pp. 59–65 (2009)Google Scholar
  11. 11.
    Queiroz, M.H., Cury, J.E.R.: Modular control of composed system. In: Proceedings of the American Control Conference, Chicago, pp. 4051–4055 (2000)Google Scholar
  12. 12.
    Queiroz, M.H., Cury, J.E.R.: Synthesis and implementation of local modular supervisory control for a manufacturing cell. In: Proceedings of International Workshop on Discrete Event Systems (WODES), pp. 103–110 (2002)Google Scholar
  13. 13.
    Ramadge, P.J., Wonham, W.: The control of discrete event systems. Proceedings of the IEEE 77(1), 81–98 (1989)CrossRefGoogle Scholar
  14. 14.
    Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event process. SIAM J. Control and Optimization 25(1), 206–230 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: A low cost scalable robot system for collective behaviors. In: Proccedings of ICRA 2012, pp. 3293–3298. IEEE (2012)Google Scholar
  16. 16.
    Tsalatsanis, A., Yalcin, A., Valavanis, K.: Optimized task allocation in cooperative robot teams. In: Proc. of the 17th Mediterranean Conference on Control and Automation (MED 2009), pp. 270–275 (2009)Google Scholar
  17. 17.
    Tsalatsanis, A., Yalcin, A., Valavanis, K.P.: Dynamic task allocation in cooperative robot teams. Robotica 30(5), 721–730 (2012)CrossRefGoogle Scholar
  18. 18.
    Wonham, W., Ramadge, P.J.: Modular supervisory control of discrete event system. Mathematics of Control, Signals and Systems 1(1), 13–30 (1988)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yuri K. Lopes
    • 1
  • André B. Leal
    • 2
  • Tony J. Dodd
    • 1
  • Roderich Groß
    • 1
  1. 1.Natural Robotics LabThe University of SheffieldSheffieldUK
  2. 2.Santa Catarina State UniversityJoinville-SCBrazil

Personalised recommendations