Ant Colony Optimization on a Budget of 1000

  • Leslie Pérez Cáceres
  • Manuel López-Ibáñez
  • Thomas Stützle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8667)


Ant Colony Optimization (ACO) was originally developed as an algorithmic technique for tackling NP-hard combinatorial optimization problems. Most of the research on ACO has focused on algorithmic variants that obtain high-quality solutions when computation time allows the evaluation of a very large number of candidate solutions, often in the order of millions. However, in situations where the evaluation of solutions is very costly in computational terms, only a relatively small number of solutions can be evaluated within a reasonable time. This situation may arise, for example, when evaluation requires simulation. In such a situation, the current knowledge on the best ACO strategies and the range of the best settings for various ACO parameters may not be applicable anymore. In this paper, we start an investigation of how different ACO algorithms behave if they have available only a very limited number of solution evaluations, say, 1000. We show that, after tuning the parameter settings for this type of scenario, still the original Ant System performs relatively poor compared to other ACO strategies. However, the best parameter settings for such a small evaluation budget are very different from the standard recommendations available in the literature.


Travel Salesman Problem Solution Evaluation Quadratic Assignment Problem Heuristic Information Default Parameter Setting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    April, J., Glover, F., Kelly, J., Laguna, M.: Practical introduction to simulation optimization. In: Proceedings of the 2003 Winter Simulation Conference, vol. 1, pp. 71–78 (December 2003)Google Scholar
  2. 2.
    Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bersini, H., Dorigo, M., Langerman, S., Seront, G., Gambardella, L.M.: Results of the first international contest on evolutionary optimisation. In: Bäck, T., Fukuda, T., Michalewicz, Z. (eds.) Proceedings of ICEC 1996, pp. 611–615. IEEE Press, Piscataway (1996)Google Scholar
  4. 4.
    Bullnheimer, B., Hartl, R., Strauss, C.: A new rank-based version of the Ant System: A computational study. Central European Journal for Operations Research and Economics 7(1), 25–38 (1999)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D. thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy (1992) (in Italian)Google Scholar
  6. 6.
    Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics – Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  8. 8.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gambardella, L.M., Montemanni, R., Weyland, D.: Coupling ant colony systems with strong local searches. European Journal of Operational Research 220(3), 831–843 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)zbMATHGoogle Scholar
  11. 11.
    Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. Journal of Global Optimization 13(4), 455–492 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Knowles, J.D., Corne, D., Reynolds, A.P.: Noisy multiobjective optimization on a budget of 250 evaluations. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 36–50. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011),
  14. 14.
    López-Ibáñez, M., Prasad, T.D., Paechter, B.: Ant colony optimisation for the optimal control of pumps in water distribution networks. Journal of Water Resources Planning and Management, ASCE 134(4), 337–346 (2008)CrossRefGoogle Scholar
  15. 15.
    López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour of optimisation algorithms. European Journal of Operational Research 235(3), 569–582 (2014)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Maur, M., López-Ibáñez, M., Stützle, T.: Pre-scheduled and adaptive parameter variation in \(\mathcal{MAX}\)\(\mathcal{MIN}\) Ant System. In: Ishibuchi, H., et al. (eds.) Proceedings of CEC 2010, pp. 3823–3830. IEEE Press, Piscataway (2010)Google Scholar
  17. 17.
    Pellegrini, P., Birattari, M., Stützle, T.: A critical analysis of parameter adaptation in ant colony optimization. Swarm Intelligence 6(1), 23–48 (2012)CrossRefGoogle Scholar
  18. 18.
    Pellegrini, P., Favaretto, D., Moretti, E.: On \(\cal M\!AX\!\)\(\cal MI\!N\!\) ant system’s parameters. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 203–214. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Pellegrini, P., Mascia, F., Stützle, T., Birattari, M.: On the sensitivity of reactive tabu search to its meta-parameters. Soft Computing (in press)Google Scholar
  20. 20.
    Stützle, T.: ACOTSP: A software package of various ant colony optimization algorithms applied to the symmetric traveling salesman problem (2002),
  21. 21.
    Stützle, T., Hoos, H.H.: \(\mathcal{MAX}\)\(\mathcal{MIN}\) Ant System. Future Generation Computer Systems 16(8), 889–914 (2000)CrossRefGoogle Scholar
  22. 22.
    Stützle, T., López-Ibáñez, M., Pellegrini, P., Maur, M., Montes de Oca, M.A., Birattari, M., Dorigo, M.: Parameter adaptation in ant colony optimization. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 191–215. Springer, Berlin (2012)Google Scholar
  23. 23.
    Teixeira, C., Covas, J., Stützle, T., Gaspar-Cunha, A.: Multi-objective ant colony optimization for solving the twin-screw extrusion configuration problem. Engineering Optimization 44(3), 351–371 (2012)CrossRefGoogle Scholar
  24. 24.
    Zeng, Q., Yang, Z.: Integrating simulation and optimization to schedule loading operations in container terminals. Computers & Operations Research 36(6), 1935–1944 (2009)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Leslie Pérez Cáceres
    • 1
  • Manuel López-Ibáñez
    • 1
  • Thomas Stützle
    • 1
  1. 1.IRIDIA, CoDEUniversité libre de BruxellesBelgium

Personalised recommendations