Advertisement

Angle Modulated Particle Swarm Variants

  • Barend J. Leonard
  • Andries P. Engelbrecht
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8667)

Abstract

This paper proposes variants of the angle modulated particle swarm optimization (AMPSO) algorithm. A number of limitations of the original AMPSO algorithm are identified and the proposed variants aim to remove these limitations. The new variants are then compared to AMPSO on a number of binary problems in various dimensions. It is shown that the performance of the variants is superior to AMPSO in many problem cases. This indicates that the identified limitations may have a significant effect on performance, but that the effects can be overcome by removing those limitations. It is also observed that the ability of the variants to initialize a wider range of potential solutions can be helpful during the search process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the f-race algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HCI/ICCV 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Genetic and Evolutionary Computation Conference, pp. 11–18 (2002)Google Scholar
  3. 3.
    Dirakkhunakon, S., Suansook, Y.: Simulated annealing with iterative improvement. In: International Conference on Signal Processing Systems, pp. 302–306 (2009)Google Scholar
  4. 4.
    Engelbrecht, A.: Particle swarm optimization: Velocity initialization. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)Google Scholar
  5. 5.
    Fisher, D.: On the nxn knight cover problem. Ars Combinatoria 69, 255–274 (2003)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Goldberg, D.: Simple genetic algorithms and the minimal, deceptive problem. In: Genetic Algorithms and Simulated Annealing, p. 88 (1987)Google Scholar
  7. 7.
    Gordon, V., Slocum, T.: The knight’s tour - evolutionary vs. depth-first search. In: IEEE Congress on Evolutionary Computation, vol. 2, pp. 1435–1440 (2004)Google Scholar
  8. 8.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  9. 9.
    Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In: IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108 (1997)Google Scholar
  10. 10.
    Liu, L., Liu, W., Cartes, D., Chung, I.: Slow coherency and angle modulated particle swarm optimization based islanding of large-scale power systems. Advanced Engineering Informatics 23(1), 45–56 (2009)CrossRefGoogle Scholar
  11. 11.
    Martinjak, I., Golub, M.: Comparison of heuristic algorithms for the n-queen problem. In: 29th International Conference on Information Technology Interfaces, pp. 759–764 (2007)Google Scholar
  12. 12.
    Pampara, G.: Angle Modulated Population Based Algorithms to solve Binary Problems. Master’s thesis, University of Pretoria (2013)Google Scholar
  13. 13.
    Pampara, G., Franken, N., Engelbrecht, A.: Combining particle swarm optimisation with angle modulation to solve binary problems. In: IEEE Congress on Evolutionary Computation, vol. 1, pp. 89–96 (2005)Google Scholar
  14. 14.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 69–73. IEEE (2002)Google Scholar
  15. 15.
    Turky, A., Ahmad, A.: Using genetic algorithm for solving n-queens problem. In: International Symposium in Information Technology, vol. 2, pp. 745–747 (2010)Google Scholar
  16. 16.
    Wang, S., Watada, J., Pedrycz, W.: Value-at-risk-based two-stage fuzzy facility location problems. IEEE Transactions on Industrial Informatics, 465–482 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Barend J. Leonard
    • 1
  • Andries P. Engelbrecht
    • 1
  1. 1.Department of Computer ScienceUniversity of PretoriaSouth Africa

Personalised recommendations