Emergent Diagnoses from a Collective of Radiologists: Algorithmic versus Social Consensus Strategies

  • Daniel W. Palmer
  • David W. Piraino
  • Nancy A. Obuchowski
  • Jennifer A. Bullen
Conference paper

DOI: 10.1007/978-3-319-09952-1_20

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8667)
Cite this paper as:
Palmer D.W., Piraino D.W., Obuchowski N.A., Bullen J.A. (2014) Emergent Diagnoses from a Collective of Radiologists: Algorithmic versus Social Consensus Strategies. In: Dorigo M. et al. (eds) Swarm Intelligence. ANTS 2014. Lecture Notes in Computer Science, vol 8667. Springer, Cham

Abstract

Twelve radiologists independently diagnosed 74 medical images. We use two approaches to combine their diagnoses: a collective algorithmic strategy and a social consensus strategy using swarm techniques. The algorithmic strategy uses weighted averages and a geometric approach to automatically produce an aggregate diagnosis. The social consensus strategy used visual cues to quickly impart the essence of the diagnoses to the radiologists as they produced an emergent diagnosis. Both strategies provide access to additional useful information from the original diagnoses. The mean number of correct diagnoses from the radiologists was 50 and the best was 60. The algorithmic strategy produced 63 correct diagnoses and the social consensus produced 67. The algorithm’s accuracy in distinguishing normal vs. abnormal patients (0.919) was significantly higher than the radiologists’ mean accuracy (0.861; p = 0.047). The social consensus’ accuracy (0.951; p = 0.007) showed further improvement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel W. Palmer
    • 1
  • David W. Piraino
    • 2
  • Nancy A. Obuchowski
    • 2
  • Jennifer A. Bullen
    • 2
  1. 1.John Carroll UniversityUniversity HeightsUSA
  2. 2.Cleveland ClinicClevelandUSA

Personalised recommendations