Advertisement

SRoCS: Leveraging Stigmergy on a Multi-robot Construction Platform for Unknown Environments

  • Michael Allwright
  • Navneet Bhalla
  • Haitham El-faham
  • Anthony Antoun
  • Carlo Pinciroli
  • Marco Dorigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8667)

Abstract

Current implementations of decentralized multi-robot construction systems are limited to construction of rudimentary structures such as walls and clusters, or rely on the use of blueprints for regulation. Building processes that make use of blueprints are unattractive in unknown environments as they can not compensate for heterogeneities, such as irregular terrain. In nature, social insects coordinate the construction of their nests using stigmergy, a mechanism of indirect coordination that is robust and adaptive. In this paper, we propose the design of a multi-robot construction platform called the Swarm Robotics Construction System (SRoCS). The SRoCS platform is designed to leverage stigmergy in order to coordinate multi-robot construction in unknown environments.

Keywords

Mobile Robot Intelligent Robot Building Process Unknown Environment Real Hardware 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks: Stigmergy and collective robotics. In: Artificial life IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, pp. 181–189. MIT Press, Cambridge (1994)Google Scholar
  2. 2.
    Bolger, A., Faulkner, M., Stein, D., White, L., Rus, D.: Experiments in decentralized robot construction with tool delivery and assembly robots. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pp. 5085–5092. IEEE Press, Piscataway (2010)CrossRefGoogle Scholar
  3. 3.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  4. 4.
    Bonabeau, E., Guérin, S., Snyers, D., Kuntz, P., Theraulaz, G.: Three-dimensional architectures grown by simple ’stigmergic’ agents. BioSystems 56(1), 13–32 (2000)CrossRefGoogle Scholar
  5. 5.
    Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Franks, N.R., Rafelsberger, O., Joly, J., Blanco, S.: A model for the emergence of pillars, walls and royal chambers in termite nests. Philosophical Transactions of the Royal Society of London B: Biological Sciences 353(1375), 1561–1576 (1998)CrossRefGoogle Scholar
  6. 6.
    Bruinsma, O.H.: An Analysis of Building Behaviour of the Termite Macrotermes Subhyalinus (Rambur). Ph.D. thesis, Landbouwhoge School, Wageningen, The Netherlands (1979)Google Scholar
  7. 7.
    Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: Meyer, J.A., Wilson, S. (eds.) Proceedings of the First International Conference on Simulation of Adaptive Behavior on From Animals to Animats, pp. 356–363. MIT Press, Cambridge (1991)Google Scholar
  8. 8.
    Grassé, P.P.: La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes Natalensis et Cubitermes sp. La théorie de la stigmergie: Essai d’interpretation du comportement de termites constructeurs. Insectes Sociaux 6(1), 41–80 (1959)Google Scholar
  9. 9.
    Herbrechtsmeier, S., Witkowski, U., Rückert, U.: Bebot: A modular mobile miniature robot platform supporting hardware reconfiguration and multi-standard communication. In: Kim, J.-H., et al. (eds.) Progress in Robotics. CCIS, vol. 44, pp. 346–356. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Holland, O., Melhuish, C.: Stigmergy, self-organization, and sorting in collective robotics. Artificial Life 5(2), 173–202 (1999)CrossRefGoogle Scholar
  11. 11.
    Karsai, I., Pénzes, Z.: Comb building in social wasps: Self-organization and stigmergic script. Journal of Theoretical Biology 161(4), 505–525 (1993)CrossRefGoogle Scholar
  12. 12.
    Khoshnevis, B.: Automated construction by contour crafting – related robotics and information technologies. Automation in Construction 13(1), 5–19 (2004)CrossRefGoogle Scholar
  13. 13.
    Ladley, D., Bullock, S.: Logistic constraints on 3D termite construction. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 178–189. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Ladley, D., Bullock, S.: The role of logistic constraints in termite construction of chambers and tunnels. Journal of Theoretical Biology 234(4), 551–564 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Linardou, O.: Towards Homeostatic Architecture: Simulation of the Generative Process of a Termite Mound Construction. Master’s thesis, University College London, London, United Kingdom (2008)Google Scholar
  16. 16.
    Lindsey, Q., Mellinger, D., Kumar, V.: Construction with quadrotor teams. Autonomous Robots 33(3), 323–336 (2012)CrossRefGoogle Scholar
  17. 17.
    Martinoli, A., Mondada, F.: Probabilistic modelling of a bio-inspired collective experiment with real robots. In: Distributed Autonomous Robotic Systems, vol. 3, pp. 289–298. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Melhuish, C., Wilson, M., Sendova-Franks, A.: Patch sorting: Multi-object clustering using minimalist robots. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 543–552. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Napp, N., Rappoli, O.R., Wu, J.M., Nagpal, R.: Materials and mechanisms for amorphous robotic construction. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), pp. 4879–4885. IEEE Press, Piscataway (2012)CrossRefGoogle Scholar
  20. 20.
    Olson, E.: AprilTag: A robust and flexible visual fiducial system. In: 2011 IEEE International Conference on Robotics and Automation (ICRA 2011), pp. 3400–3407. IEEE Computer Society Press, Los Alamitos (2011)CrossRefGoogle Scholar
  21. 21.
    Petersen, K., Nagpal, R., Werfel, J.: TERMES: An autonomous robotic system for three-dimensional collective construction. In: Durrant-Whyte, H.F., et al. (eds.) Robotics: Science and Systems VII, pp. 257–264. MIT Press, Cambridge (2011)Google Scholar
  22. 22.
    Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence 6(4), 271–295 (2012)CrossRefGoogle Scholar
  23. 23.
    Soleymani, T., Trianni, V., Bonani, M., Mondada, F., Dorigo, M.: Autonomous construction with compliant building material. In: Intelligent Autonomous Systems (IAS 2014). AISC. Springer, Berlin (in press, 2014)Google Scholar
  24. 24.
    Song, Y., Kim, J.H., Shell, D.A.: Self-organized clustering of square objects by multiple robots. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 308–315. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Stewart, R.L., Russell, R.A.: A distributed feedback mechanism to regulate wall construction by a robotic swarm. Adaptive Behavior 14(1), 21–51 (2006)CrossRefGoogle Scholar
  26. 26.
    Theraulaz, G., Bonabeau, E.: Coordination in distributed building. Science 269(5224), 686–688 (1995)CrossRefGoogle Scholar
  27. 27.
    Theraulaz, G., Bonabeau, E.: Modelling the collective building of complex architectures in social insects with lattice swarms. Journal of Theoretical Biology 177(4), 381–400 (1995)CrossRefGoogle Scholar
  28. 28.
    Thomaszewski, B., Gumann, A., Pabst, S., Straßer, W.: Magnets in motion. ACM Transactions on Graphics 27(5) 162, 162:1–162:9 (2008)Google Scholar
  29. 29.
    Wawerla, J., Sukhatme, G.S., Matarić, M.J.: Collective construction with multiple robots. In: 2002 IEEE/RSJ International Conference on Intelligent Robots and System (IROS 2002), vol. 3, pp. 2696–2701. IEEE Press, Piscataway (2002)Google Scholar
  30. 30.
    Werfel, J., Bar-Yam, Y., Rus, D., Nagpal, R.: Distributed construction by mobile robots with enhanced building blocks. In: 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), pp. 2787–2794. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  31. 31.
    Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-inspired robot construction team. Science 343(6172), 754–758 (2014)CrossRefGoogle Scholar
  32. 32.
    Willmann, J., Augugliaro, F., Cadalbert, T., D’Andrea, R., Gramazio, F., Kohler, M.: Aerial robotic construction towards a new field of architectural research. International Journal of Architectural Computing 10(3), 439–460 (2012)CrossRefGoogle Scholar
  33. 33.
    Wismer, S., Hitz, G., Bonani, M., Gribovskiy, A., Magnenat, S.: Autonomous construction of a roofed structure: Synthesizing planning and stigmergy on a mobile robot. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), pp. 5436–5437. IEEE Press, Piscataway (2012)CrossRefGoogle Scholar
  34. 34.
    Worcester, J., Rogoff, J., Hsieh, M.A.: Constrained task partitioning for distributed assembly. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), pp. 4790–4796. IEEE Press, Piscataway (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Allwright
    • 1
  • Navneet Bhalla
    • 2
  • Haitham El-faham
    • 1
  • Anthony Antoun
    • 3
  • Carlo Pinciroli
    • 3
  • Marco Dorigo
    • 1
    • 3
  1. 1.Department of Computer ScienceUniversity of PaderbornPaderbornGermany
  2. 2.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  3. 3.IRIDIAUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations