Advertisement

Particle Swarm Convergence: Standardized Analysis and Topological Influence

  • Christopher W. Cleghorn
  • Andries P. Engelbrecht
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8667)

Abstract

This paper has two primary aims. Firstly, to empirically verify the use of a specially designed objective function for particle swarm optimization (PSO) convergence analysis. Secondly, to investigate the impact of PSO’s social topology on the parameter region needed to ensure convergent particle behavior. At present there exists a large number of theoretical PSO studies, however, all stochastic PSO models contain the stagnation assumption, which implicitly removes the social topology from the model, making this empirical study necessary. It was found that using a specially designed objective function for convergence analysis is both a simple and valid method for convergence analysis. It was also found that the derived region needed to ensure convergent particle behavior remains valid regardless of the selected social topology.

Keywords

Objective Function Particle Swarm Optimization Particle Swarm Convergence Analysis Ring Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poli, R.: Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications 2008, 1–10 (2008)Google Scholar
  2. 2.
    Ozcan, E., Mohan, C.: Analysis of a simple particle swarm optimization system. Intelligent Engineering Systems through Artificial Neural Networks 8, 253–258 (1998)Google Scholar
  3. 3.
    Ozcan, E., Mohan, C.: Particle swarm optimization: Surfing the waves. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3. IEEE Press, Piscataway (1999)Google Scholar
  4. 4.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)CrossRefGoogle Scholar
  5. 5.
    Zheng, Y., Ma, L., Zhang, L., Qian, J.: On the convergence analysis and parameter selection in particle swarm optimization. In: Proceedings of the International Conference on Machine Learning and Cybernetics, Xi’an, China, vol. 3, pp. 1802–1907 (2003)Google Scholar
  6. 6.
    Van den Bergh, F., Engelbrecht, A.: A study of particle swarm optimization particle trajectories. Information Sciences 176(8), 937–971 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Trelea, I.: The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letters 85(6), 317–325 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cleghorn, C., Engelbrecht, A.: A generalized theoretical deterministic particle swarm model. Swarm Intelligence Journal, 1–25 (2014)Google Scholar
  9. 9.
    Kadirkamanathan, V., Selvarajah, K., Fleming, P.: Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Transactions on Evolutionary Computation 10(3), 245–255 (2006)CrossRefGoogle Scholar
  10. 10.
    Gazi, V.: Stochastic stability analysis of the particle dynamics in the PSO algorithm. In: Proceedings of the IEEE International Symposium on Intelligent Control, pp. 708–713. IEEE Press, Dubrovnik (2012)Google Scholar
  11. 11.
    Poli, R.: Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Transactions on Evolutionary Computation 13(4), 712–721 (2009)CrossRefGoogle Scholar
  12. 12.
    Campana, E., Fasano, G., Pinto, A.: Dynamic analysis for the selection of parameters and initial population, in particle swarm optimization. Journal of Global Optimization 48, 347–397 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kennedy, J., Eberhart, R.: Particle swarm optimization, pp. 1942–1948. IEEE Press, Piscataway (1995)Google Scholar
  14. 14.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 69–73. IEEE Press, Piscataway (1998)Google Scholar
  15. 15.
    Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3, pp. 1931–1938. IEEE Press, Piscataway (1999)Google Scholar
  16. 16.
    Kennedy, J., Mendes, R.: Population structure and particle performance. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1671–1676. IEEE Press, Piscataway (2002)Google Scholar
  17. 17.
    Engelbrecht, A.: Particle swarm optimization: Global best or local best. In: 1st BRICS Countries Congress on Computational Intelligence. IEEE Press, Piscataway (2013)Google Scholar
  18. 18.
    Van den Bergh, F.: An analysis of particle swarm optimizers. PhD thesis, Department of Computer Science, University of Pretoria, Pretoria, South Africa (2002)Google Scholar
  19. 19.
    Kisacanin, B., Agarwal, G.: Linear Control Systems: With Solved Problems and Matlab Examples. Springer, New York (2001)CrossRefGoogle Scholar
  20. 20.
    Cleghorn, C., Engelbrecht, A.: Particle swarm convergence: An empirical investigation. In: Proceedings of the Congress on Evolutionary Computation, pp. 1–7. IEEE Press, Piscataway (accepted at, 2014)Google Scholar
  21. 21.
    Liang, J., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization. Technical Report 201311, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Nanyang Technological University, Singapore (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christopher W. Cleghorn
    • 1
  • Andries P. Engelbrecht
    • 1
  1. 1.Department of Computer ScienceUniversity of PretoriaSouth Africa

Personalised recommendations