Online Recognition of Fixations, Saccades, and Smooth Pursuits for Automated Analysis of Traffic Hazard Perception

  • Enkelejda Kasneci
  • Gjergji Kasneci
  • Thomas C. Kübler
  • Wolfgang Rosenstiel
Part of the Springer Series in Bio-/Neuroinformatics book series (SSBN, volume 4)

Abstract

Complex and hazardous driving situations often arise with the delayed perception of traffic objects. To automatically detect whether such objects have been perceived by the driver, there is a need for techniques that can reliably recognize whether the driver’s eyes have fixated or are pursuing the hazardous object. A prerequisite for such techniques is the reliable recognition of fixations, saccades, and smooth pursuits from raw eye tracking data. This chapter addresses the challenge of analyzing the driver’s visual behavior in an adaptive and online fashion to automatically distinguish between fixation clusters, saccades, and smooth pursuits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berg, D.J., Boehnke, S.E., Marino, R.A., Munoz, D.P., Itti, L.: Free viewing of dynamic stimuli by humans and monkeys. Journal of Vision 9(5), 1–15 (2009)CrossRefGoogle Scholar
  2. 2.
    Bishop, C.M.: Machine Learning and Pattern Recognition. Springer-Verlag, New York, Inc., Secaucus (2006)MATHGoogle Scholar
  3. 3.
    Blignaut, P.: Fixation identification: The optimum threshold for a dispersion algorithm. Attention, Perception, & Psychophysics 71(4), 881–895 (2009)CrossRefGoogle Scholar
  4. 4.
    Buswell, G.T.: How people look at pictures. University of Chicago Press, Chicago (1935)Google Scholar
  5. 5.
    Berger, C., Winkels, M., Lischke, A., Höppner, J.: GazeAlyze: A MATLAB toolbox for the analysis of eye movement data. Behavior Research Methods 44(2), 404–419 (2012)CrossRefGoogle Scholar
  6. 6.
    Camilli, M., Nacchia, R., Terenzi, M., Di Nocera, F.: Astef: A simple tool for examining fixations. Behavior Research Methods 40, 373–382 (2008)CrossRefGoogle Scholar
  7. 7.
    Cornsweet, T.: Visual perception. Academic Press (2012)Google Scholar
  8. 8.
    Chapman, P.R., Underwood, G.: Visual search of driving situations: Danger and experience. Perception London 27, 951–964 (1998)CrossRefGoogle Scholar
  9. 9.
    Chapman, P., Underwood, G., Roberts, K.: Visual search patterns in trained and untrained novice drivers. Transportation Research Part F: Traffic Psychology and Behaviour 5(2), 157–167 (2002)CrossRefGoogle Scholar
  10. 10.
    Duchowski, A.: Eye tracking methodology: Theory and practice. Springer, London (2007)Google Scholar
  11. 11.
    Eyetellect. GazeTracker, http://www.eyetellect.com/gazetracker/
  12. 12.
    Ferrera, V.P.: Task-dependent modulation of the sensorimotor transformation for smooth pursuit eye movements. Journal of Neurophysiology 84(6), 2725–2738 (2000)Google Scholar
  13. 13.
    Forney Jr., G.D.: The viterbi algorithm. Proceedings of the IEEE 61(3), 268–278 (1973)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Fletcher, L., Zelinsky, A.: Driver inattention detection based on eye gaze-road event correlation. The International Journal of Robotics Research 28(6), 774–801 (2009)CrossRefGoogle Scholar
  15. 15.
    Gitelman, D.R.: ILAB: A program for postexperimental eye movement analysis. Behavioral Research Methods, Instruments and Computers 34(4), 605–612 (2002)CrossRefGoogle Scholar
  16. 16.
    Hayhoe, M., Ballard, D.: Eye movements in natural behavior. Trends in Cognitive Science 9(4), 188–194 (2005)CrossRefGoogle Scholar
  17. 17.
    Henderson, J.M., Brockmole, J.R., Castelhano, M.S., Mack, M.: Visual saliency does not account for eye movements during visual search in real-world scenes. In: Eye movements: A Window on Mind and Brain, pp. 537–562 (2007)Google Scholar
  18. 18.
    Hamel, J., De Beukelear, S., Kraft, A., Ohl, S., Audebert, H.J., Brandt, S.A.: Age-related changes in visual exploratory behavior in a natural scene setting. Frontiers in Psychology 4(339) (2013)Google Scholar
  19. 19.
    Horswill, M.S., Marrington, S.A., McCullough, C.M., Wood, J., Pachana, N.A., McWilliam, J., Raikos, M.K.: The hazard perception ability of older drivers. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences 63(4), P212–P218 (2008)Google Scholar
  20. 20.
    Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., Van de Weijer, J.: Eye tracking: A comprehensive guide to methods and measures. Oxford University Press (2011)Google Scholar
  21. 21.
    Ho, G., Scialfa, C.T., Caird, J.K., Graw, T.: Visual search for traffic signs: The effects of clutter, luminance, and aging. Human Factors: The Journal of the Human Factors and Ergonomics Society 43(2), 194–207 (2001)CrossRefGoogle Scholar
  22. 22.
    Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40(10-12), 1489–1506 (2000)CrossRefGoogle Scholar
  23. 23.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  24. 24.
    Itti, L.: Quantifying the contribution of low-level saliency to human eye movements in dynamic scenes. Visual Cognition 12(6), 1093–1123 (2005)CrossRefGoogle Scholar
  25. 25.
    Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)CrossRefGoogle Scholar
  26. 26.
    Kasneci, E.: Towards the Automated Recognition of Assistance Need for Drivers with Impaired Visual Field. PhD thesis, University of Tübingen, Wilhelmstr. 32, 72074 Tübingen (2013)Google Scholar
  27. 27.
    Konstantopoulos, P., Chapman, P., Crundall, D.: Exploring the ability to identify visual search differences when observing drivers’ eye movements. Transportation Research Part F: Traffic Psychology and Behaviour 15(3), 378–386 (2012)CrossRefGoogle Scholar
  28. 28.
    Komogortsev, O.V., Jayarathna, S., Koh, D.H., Gowda, S.M.: Qualitative and quantitative scoring and evaluation of the eye movement classification algorithms. In: Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, ETRA 2010, pp. 65–68. ACM, New York (2010)Google Scholar
  29. 29.
    Komogortsev, O.V., Karpov, A.: Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades. Behavior Research Methods 45, 203–215 (2013)CrossRefGoogle Scholar
  30. 30.
    Kasneci, E., Kasneci, G., Kübler, T.C., Rosenstiel, W.: The applicability of probabilistic methods to the online recognition of fixations and saccades in dynamic scenes. In: Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 2014, pp. 323–326. ACM, New York (2014)CrossRefGoogle Scholar
  31. 31.
    Kübler, T.C., Kasneci, E., Rosenstiel, W., Schiefer, U., Nagel, K., Papageorgiou, E.: Stress-indicators and exploratory gaze for the analysis of hazard perception in patients with visual field loss. Transportation Research Part F: Traffic Psychology and Behaviour 24, 231–243 (2014)CrossRefGoogle Scholar
  32. 32.
    Kasneci, E., Sippel, K., Aehling, K., Heister, M., Rosenstiel, W., Schiefer, U., Papageorgiou, E.: Driving with Binocular Visual Field Loss? A Study on a Supervised On-Road Parcours with Simultaneous Eye and Head Tracking. PLoS ONE 9(2), e87470 (2014)Google Scholar
  33. 33.
    Land, M.F.: Vision, eye movements, and natural behavior. Visual Neuroscience 26(1), 51–62 (2009)CrossRefGoogle Scholar
  34. 34.
    Land, M.F., Tatler, B.W.: Looking and acting: vision and eye movements in natural behaviour. Oxford University Press (2009)Google Scholar
  35. 35.
    Leigh, R.J., Zee, D.S.: The neurology of eye movements. Oxford University Press (2006)Google Scholar
  36. 36.
    Markoff, J.: Google cars drive themselves, in traffic. The New York Times 10, A1 (2010)Google Scholar
  37. 37.
    McConkie, G.W.: Evaluating and reporting data quality in eye movement research. Behavior Research Methods & Instrumentation 13(2), 97–106 (1981)CrossRefGoogle Scholar
  38. 38.
    Maltz, M., Shinar, D.: Eye movements of younger and older drivers. Human Factors: The Journal of the Human Factors and Ergonomics Society 41(1), 15–25 (1999)CrossRefGoogle Scholar
  39. 39.
    Maltz, M., Shinar, D.: Imperfect in-vehicle collision avoidance warning systems can aid drivers. Human Factors: The Journal of the Human Factors and Ergonomics Society 46(2), 357–366 (2004)CrossRefGoogle Scholar
  40. 40.
    Munn, S.M., Stefano, L., Pelz, J.B.: Fixation-identification in dynamic scenes: comparing an automated algorithm to manual coding. In: Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization, APGV 2008, pp. 33–42. ACM, New York (2008)Google Scholar
  41. 41.
    Minka, T., Winn, J.M., Guiver, J.P., Knowles, D.A.: Infer.NET 2.5. Microsoft Research Cambridge (2012), http://research.microsoft.com/infernet
  42. 42.
    Nagayama, Y.: Role of visual perception in driving. IATSS Research 2, 64–73 (1978)Google Scholar
  43. 43.
    Nuthmann, A., Henderson, J.M.: Object-based attentional selection in scene viewing. Journal of Vision 10(8), 20 (2010)CrossRefGoogle Scholar
  44. 44.
    Noton, D., Stark, L.W.: Eye movements and visual perception. Scientific American 224(6), 34–43 (1971)Google Scholar
  45. 45.
    Pradhan, A.K., Hammel, K.R., DeRamus, R., Pollatsek, A., Noyce, D.A., Fisher, D.L.: Using Eye Movements To Evaluate Effects of Driver Age on Risk Perception in a Driving Simulator. Human Factors: The Journal of the Human Factors and Ergonomics Society 47(4), 840–852 (2005)CrossRefGoogle Scholar
  46. 46.
    Pomerleau, D.A.: ALVINN: An autonomous land vehicle in a neural network. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems 1, pp. 305–313. Morgan Kaufmann, San Francisco (1989)Google Scholar
  47. 47.
    Privitera, C.M., Stark, L.W.: Algorithms for defining visual regions-of-interest: Comparison with eye fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(9), 970–982 (2000)CrossRefGoogle Scholar
  48. 48.
    Privitera, C.M., Stark, L.W.: Scanpath theory, attention, and image processing algorithms for predicting human eye fixations. In: Itti, L., Rees, G., Tsotsos, J. (eds.) Neurobiology of Attention, pp. 269–299 (2005)Google Scholar
  49. 49.
    Schütz, A.C., Braun, D.I., Gegenfurtner, K.R.: Eye movements and perception: a selective review. Journal of Vision 11(9), 1–30 (2011)CrossRefGoogle Scholar
  50. 50.
    Santella, A., De Carlo, D.: Robust clustering of eye movement recordings for quantification of visual interest. In: Proceedings of the 2004 Symposium on Eye Tracking Research & Applications, ETRA 2004, pp. 27–34. ACM, New York (2004)CrossRefGoogle Scholar
  51. 51.
    Seeing Machines Inc. faceLab 5, http://www.seeingmachines.com/product/facelab/
  52. 52.
    SensoMotoric Instruments GmbH. SMI BeGaze Eye Tracking Analysis Software, http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/begaze-analysis-software.html
  53. 53.
    Salvucci, D., Goldberg, J.: Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 Symposium on Eye Tracking Tesearch & Applications, ETRA 2000, pp. 71–78. ACM, New York (2000)Google Scholar
  54. 54.
    Sauter, D., Martin, B.J., Di Renzo, N., Vomscheid, C.: Analysis of eye tracking movements using innovations generated by a Kalman filter. Medical and biological Engineering and Computing 29(1), 63–69 (1991)CrossRefGoogle Scholar
  55. 55.
    Summala, H., Nieminen, T., Punto, M.: Maintaining lane position with peripheral vision during in-vehicle tasks. Human Factors: The Journal of the Human Factors and Ergonomics Society 38(3), 442–451 (1996)CrossRefGoogle Scholar
  56. 56.
    SR Research Ltd. EyeLink 1000 and EyeLink II, http://www.sr-research.com/index.html.
  57. 57.
    Shic, F., Scassellati, B., Chawarska, K.: The incomplete fixation measure. In: Proceedings of the 2008 Symposium on Eye Tracking Research & Applications, ETRA 2008, pp. 111–114. ACM, New York (2008)Google Scholar
  58. 58.
    Turano, K.A., Geruschat, D.R., Baker, F.H.: Oculomotor strategies for the direction of gaze tested with a real-world activity. Vision Research 43, 333–346 (2003)CrossRefGoogle Scholar
  59. 59.
    Tafaj, E., Hempel, S., Heister, M., Aehling, K., Schaeffel, F., Dietzsch, J., Rosenstiel, W., Schiefer, U.: A New Method for Assessing the Exploratory Field of View (EFOV). In: Stacey, D., SoléCasals, J., Fred, A.L.N., Gamboa, H. (eds.) HEALTHINF 2013, pp. 5–11. SciTePress (2013)Google Scholar
  60. 60.
    Tatler, B.W., Hayhoe, M.M., Land, M.F., Ballard, D.H.: Eye guidance in natural vision: reinterpreting salience. Journal of Vision 11(5), 5 (2011)CrossRefGoogle Scholar
  61. 61.
    Tafaj, E., Kübler, T.C., Kasneci, G., Rosenstiel, W., Bogdan, M.: Online classification of eye tracking data for automated analysis of traffic hazard perception. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 442–450. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  62. 62.
    Tafaj, E., Kübler, T., Peter, J., Schiefer, U., Bogdan, M., Rosenstiel, W.: Vishnoo - an open-source software for vision research. In: Proceedings of the 24th IEEE International Symposium on Computer-Based Medical Systems, CBMS 2011, pp. 1–6. IEEE (2011)Google Scholar
  63. 63.
    Tafaj, E., Kasneci, G., Rosenstiel, W., Bogdan, M.: Bayesian online clustering of eye movement data. In: Proceedings of the Symposium on Eye Tracking Research & Applications, ETRA 2012, pp. 285–288. ACM, New York (2012)Google Scholar
  64. 64.
    Tobii Technology AB. Eye Tracking for Research and Analysis, http://www.tobii.com/en/eye-tracking-research/global/.
  65. 65.
    Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., et al.: Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics 25(8), 425–466 (2008)CrossRefGoogle Scholar
  66. 66.
    Underwood, G., Chapman, P., Bowden, K., Crundall, D.: Visual search while driving: skill and awareness during inspection of the scene. Transportation Research Part F: Traffic Psychology and Behaviour 5(2), 87–97 (2002)CrossRefGoogle Scholar
  67. 67.
    Urruty, T., Lew, S., Ihadaddene, N., Simovici, D.A.: Detecting eye fixations by projection clustering. In: ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), vol. 3(4), pp. 1–20 (2007)Google Scholar
  68. 68.
    Underwood, G., Phelps, N., Wright, C., Van Loon, E., Galpin, A.: Eye fixation scanpaths of younger and older drivers in a hazard perception task. Ophthalmic and Physiological Optics 25(4), 346–356 (2005)CrossRefGoogle Scholar
  69. 69.
    Vidal, M., Bulling, A., Gellersen, H.: Detection of smooth pursuits using eye movement shape features. In: Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 2012, pp. 177–180. ACM, New York (2012)Google Scholar
  70. 70.
    Velichkovsky, B.M., Rothert, A., Kopf, M., Dornhöfer, S.M., Joos, M.: Towards an express-diagnostics for level of processing and hazard perception. Transportation Research Part F: Traffic Psychology and Behaviour 5(2), 145–156 (2002)CrossRefGoogle Scholar
  71. 71.
    Widdel, H.: Operational problems in analysing eye movements. In: Gale, A.G., Johnson, F. (eds.) Theoretical and Applied Aspects of Eye Movement Research Selected/Edited Proceedings of The Second European Conference on Eye Movements. Advances in Psychology, vol. 22, pp. 21–29. North-Holland (1984)Google Scholar
  72. 72.
    Wooding, D.S.: Fixation maps: quantifying eye-movement traces. In: Proceedings of the Eye Tracking Research and Applications, pp. 31–36 (2002)Google Scholar
  73. 73.
    Yarbus, A.L.: Eye movements and vision. Plenum Press, New York (1967)CrossRefGoogle Scholar
  74. 74.
    Zeeb, E.: Daimler’s New Full-Scale, High-dynamic Driving Simulator–A Technical Overview. In: Proceedings of the Driving Simulator Conference Europe, pp. 157–165. Institut national de recherche sur les transports et leur sécurité (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Enkelejda Kasneci
    • 1
  • Gjergji Kasneci
    • 2
  • Thomas C. Kübler
    • 1
  • Wolfgang Rosenstiel
    • 1
  1. 1.Department of Computer EngineeringUniversity of TübingenTübingenGermany
  2. 2.Hasso Plattner InstitutePotsdamGermany

Personalised recommendations