On Terrain Coverage Optimization by Using a Network Approach for Universal Graph-Based Data Mining and Knowledge Discovery

  • Michael Preuß
  • Matthias Dehmer
  • Stefan Pickl
  • Andreas Holzinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8609)

Abstract

This conceptual paper discusses a graph-based approach for on-line terrain coverage, which has many important research aspects and a wide range of application possibilities, e.g in multi-agents. Such approaches can be used in different application domains, e.g. in medical image analysis. In this paper we discuss how the graphs are being generated and analyzed. In particular, the analysis is important for improving the estimation of the parameter set for the used heuristic in the field of route planning. Moreover, we describe some methods from quantitative graph theory and outline a few potential research routes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Evert, F.K., van der Heijden, G.W.A.M., Lotz, L.A.P., Polder, G., Lamaker, A., de Jong, A., Kuyper, M.C., Groendijk, E.J.K., Neeteson, J.J., van der Zalm, T.: A mobile field robot with vision-based detection of volunteer potato plants in a corn crop. Weed Technology 20, 853–861 (2006)CrossRefGoogle Scholar
  2. 2.
    Kumar, V., Rus, D., Singh, S.: Robot and sensor networks for first responders. IEEE Pervasive Computing 3, 24–33 (2004)CrossRefGoogle Scholar
  3. 3.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 26, 29–41 (1996)CrossRefGoogle Scholar
  4. 4.
    Senthilkumar, K.S., Bharadwaj, K.K.: Spanning tree based terrain coverage by multi robots in unknown environments. In: IEEE Annual IEEE INDICON Conference, pp. 120–125 (2008)Google Scholar
  5. 5.
    Holzinger, A., Ofner, B., Dehmer, M.: Multi-touch graph-based interaction for knowledge discovery on mobile devices: State-of-the-art and future challenges. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 241–254. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics - state-of-the-art, future challenges and research directions. BMC Bioinformatics 15, I1 (2014)Google Scholar
  7. 7.
    Zheng, X., Koenig, S., Kempe, D., Jain, S.: Multirobot forest coverage for weighted and unweighted terrain. Transactions on Robotics 26, 1018–1031 (2010)CrossRefGoogle Scholar
  8. 8.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95, 215–233 (2007)CrossRefGoogle Scholar
  9. 9.
    Arkin, R., Balch, T.: Cooperative multiagent robotic systems. In: Artificial Intelligence and Mobile Robots. MIT/AAAI Press (1998)Google Scholar
  10. 10.
    Wagner, I., Bruckstein, A.: From ants to a(ge)nts: A special issue on ant-robotics. Annals of Mathematics and Artificial Intelligence 31, 1–5 (2001)CrossRefGoogle Scholar
  11. 11.
    Chevallier, D., Payandeh, S.: On kinematic geometry of multi-agent manipulating system based on the contact force information. In: Proceedings of the 6th International Conference on Intelligent Autonomous Systems (2000)Google Scholar
  12. 12.
    Gerkey, B., Mataric, M.: Sold!: auction methods for multirobot coordination. IEEE Transactions on Robotics and Automation 18, 758–768 (2002)CrossRefGoogle Scholar
  13. 13.
    Zlot, R., Stentz, A., Dias, M., Thayer, S.: Multi-robot exploration controlled by a market economy. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 3016–3023 (2002)Google Scholar
  14. 14.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy (1992) (in Italian)Google Scholar
  16. 16.
    Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM 5, 345 (1962)CrossRefGoogle Scholar
  17. 17.
    Gen, M., Cheng, R., Wang, Q.: Genetic algorithms for solving shortest path problems. In: IEEE International Conference on Evolutionary Computation, pp. 401–406 (1997)Google Scholar
  18. 18.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107 (1968)CrossRefGoogle Scholar
  19. 19.
    Preuß, M.: A multi-objective online terrain coverage approach. In: Proceedings of the International Conference on Operations Research. Springer (in print, 2014)Google Scholar
  20. 20.
    Hoog, J., Cameron, S., Visser, A.: Role-based autonomous multi-robot exploration. In: Proceedings of the International Conference on Advanced Cognitive Technologies and Applications (2009)Google Scholar
  21. 21.
    Ghoul, S., Hussein, A., Abdel-Wahab, M., Witkowski, U., Rückert, U.: A modified multiple depth first search algorithm for grid mapping using mini-robots khepera. Journal of Computing Science and Engineering 2, 321–338 (2008)CrossRefGoogle Scholar
  22. 22.
    Preuß, M.: Terrain Coverage - Modelle und Algorithmen. Master’s thesis, University of the German Federal Armed Forces Munich (2011)Google Scholar
  23. 23.
    Alaya, I., Solnon, C., Ghédira, K.: Ant colony optimization for multi-objective optimization problems. In: Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, pp. 450–457 (2007)Google Scholar
  24. 24.
    Karasan, O., Pinar, M., Yaman, H.: The robust shortest path problem with interval data. Technical report, Bilkent University, Department of Industrial Engineering, Ankara (2001)Google Scholar
  25. 25.
    Bertsekas, D., Tsitsiklis, J.: An Analysis of Stochastic Shortest Path Problems. Mathematics of Operations Research 16 (1991)Google Scholar
  26. 26.
    Yao, J.S., Lin, F.T.: Fuzzy shortest-path network problems with uncertain edge weights. Journal of Information Science and Engineering 19, 329–351 (2003)MathSciNetGoogle Scholar
  27. 27.
    Sahinidis, N.: Optimization under uncertainty: state-of-the-art and opportunities. Computers & Chemical Engineering 28, 971–983 (2004); FOCAPO 2003 Special issueGoogle Scholar
  28. 28.
    Adamic, L., Huberman, B.: Power-law distribution of the world wide web. Science 287, 2115a (2000)Google Scholar
  29. 29.
    Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco (2002)Google Scholar
  30. 30.
    Barabási, A.L., Oltvai, Z.N.: Network biology: Understanding the cell’s functional organization. Nature Reviews. Genetics 5, 101–113 (2004)CrossRefGoogle Scholar
  31. 31.
    Dehmer, M., Emmert-Streib, F., Graber, A., Salvador, A. (eds.): Applied Statistics for Network Biology. Quantitative and Network Biology. Wiley-Blackwell (2011)Google Scholar
  32. 32.
    Emmert-Streib, F., Dehmer, M. (eds.): Analysis of Microarray Data: A Network-based Approach. Wiley VCH Publishing (2010)Google Scholar
  33. 33.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks. From Biological Networks to the Internet and WWW. Oxford University Press (2003)Google Scholar
  34. 34.
    Erdös, P., Rényi, P.: On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl 5, 17–61 (1960)MATHGoogle Scholar
  35. 35.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  36. 36.
    Estrada, E.: The Structure of Complex Networks. Theory and Applications. Oxford University Press (2011)Google Scholar
  37. 37.
    Dehmer, M., Emmert-Streib, F.: Quantitative Graph Theory. Theory and Applications. CRC Press (in press, 2014)Google Scholar
  38. 38.
    Mehler, A.: A quantitative graph model of social ontologies by example of wikipedia. In: Mehler, A., Sharoff, S., Rehm, G., Santini, M. (eds.) Genres on the Web: Computational Models and Empirical Studies. Springer (2009) (to appear)Google Scholar
  39. 39.
    Mehler, A.: Social ontologies as generalized nearly acyclic directed graphs: A quantitative graph model of social tagging. In: Dehmer, M., Emmert-Streib, F., Mehler, A. (eds.) Towards an Information Theory of Complex Networks: Statistical Methods and Applications, pp. 259–319. Birkhäuser, Boston/Basel (2011)CrossRefGoogle Scholar
  40. 40.
    Halin, R.: Graphentheorie, Berlin, Germany. Akademie Verlag (1989)Google Scholar
  41. 41.
    Harary, F.: Graph Theory, Reading, MA, USA. Addison Wesley Publishing Company (1969)Google Scholar
  42. 42.
    Bonchev, D., Rouvray, D.H.: Complexity in Chemistry, Biology, and Ecology, New York, NY, USA. Mathematical and Computational Chemistry. Springer (2005)Google Scholar
  43. 43.
    Mowshowitz, A.: Entropy and the complexity of the graphs I: An index of the relative complexity of a graph. Bull. Math. Biophys. 30, 175–204 (1968)CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Todeschini, R., Consonni, V., Mannhold, R.: Handbook of Molecular Descriptors, Weinheim, Germany. Wiley-VCH (2002)Google Scholar
  45. 45.
    Bonchev, D., Mekenyan, O., Trinajstić, N.: Isomer discrimination by topological information approach. J. Comp. Chem. 2, 127–148 (1981)CrossRefGoogle Scholar
  46. 46.
    Dehmer, M., Emmert-Streib, F., Grabner, M.: A computational approach to construct a multivariate complete graph invariant. Inf. Sci. 260, 200–208 (2014)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Dehmer, M., Grabner, M., Varmuza, K.: Information indices with high discriminative power for graphs. PLoS One 7, e31214 (2012)Google Scholar
  48. 48.
    Konstantinova, E.V., Skorobogatov, V.A., Vidyuk, M.V.: Applications of information theory in chemical graph theory. Indian Journal of Chemistry 42, 1227–1240 (2002)Google Scholar
  49. 49.
    Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Inc., Upper Saddle River (1988)Google Scholar
  50. 50.
    Bunke, H.: Graph matching: Theoretical foundations, algorithms, and applications. In: Proceedings of Vision Interface 2000, pp. 82–88 (2000)Google Scholar
  51. 51.
    Sobik, F.: Graphmetriken und Klassifikation strukturierter Objekte. ZKI-Informationen, Akad. Wiss. DDR 2, 63–122 (1982)Google Scholar
  52. 52.
    Zelinka, B.: On a certain distance between isomorphism classes of graphs. Časopis pro p̆est. Mathematiky 100, 371–373 (1975)MATHMathSciNetGoogle Scholar
  53. 53.
    Dehmer, M., Emmert-Streib, F.: Comparing large graphs efficiently by margins of feature vectors. Applied Mathematics and Computation 188, 1699–1710 (2007)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Dehmer, M., Mehler, A.: A new method of measuring similarity for a special class of directed graphs. Tatra Mountains Mathematical Publications 36, 39–59 (2007)MATHMathSciNetGoogle Scholar
  55. 55.
    Holzinger, A., Malle, B., Bloice, M., Wiltgen, M., Ferri, M., Stanganelli, I., Hofmann-Wellenhof, R.: On the generation of point cloud data sets: the first step in the knowledge discovery process. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 57–80. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  56. 56.
    Kasaiezadeh, A., Khajepour, A.: Multi-agent stochastic level set method in image segmentation. Computer Vision and Image Understanding 117, 1147–1162 (2013)CrossRefGoogle Scholar
  57. 57.
    Holzinger, K., Palade, V., Rabadan, R., Holzinger, A.: Darwin or lamarck? future challenges in evolutionary algorithms for knowledge discovery and data mining. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 35–56. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Preuß
    • 1
  • Matthias Dehmer
    • 1
  • Stefan Pickl
    • 1
  • Andreas Holzinger
    • 2
    • 3
  1. 1.Institute for Theoretical Computer Science, Mathematics & Operations ResearchUniversity of the German Federal Armed Forces MunichGermany
  2. 2.Research Unit HCI, Institute for Medical InformaticsMedical University GrazAustria
  3. 3.Institute for Information Systems and Computer MediaGraz University of TechnologyAustria

Personalised recommendations