Advanced Research on Data Privacy in the ARES Project

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 567)

Abstract

Privacy has become an important concern in today’s society. The advancement and pervasiveness of information and communication technologies have a great positive impact in our society, they greatly affect how we socialize, the way we do business, or even our individual and social freedom.

References

  1. 1.
    Abril, D., Navarro-Arribas, G., Torra, V.: Data privacy with R. Chapter 17, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  2. 2.
    Aggarwal, C.C., Yu, P.S.: A general survey of privacy-preserving data mining models and algorithms. Privacy-Preserving Data Mining, Advances in Database Systems, pp. 11–52. Springer, New York (2008)Google Scholar
  3. 3.
    Aragonés, J., Manjón, J.A.: Field trial for joint validation and media dissemination of WP1-WP2-WP3-WP4 technologies in a real-world vehicular network environment (WP6.T1) Deliverable Report. ARES project CONSOLIDER-INGENIO 2010 CSD2007-00004 (2012)Google Scholar
  4. 4.
    Barbaro, M., Zeller, T.: A Face is Exposed for AOL Searcher No. 4417749. The New York Times, New York (2006). Accessed 9 Aug 2006 (Accessed 25 Apr 2010)Google Scholar
  5. 5.
    Batet, M., Sanchez, D.: Contributions on Semantic Similarity and its Applications to Data Privacy. Chapter 18, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  6. 6.
    BBC News: Sony faces legal action over attack on PlayStation network. BBC news technology. http://www.bbc.co.uk/news/technology-13192359 (2011). Accessed 28 Apr 2011
  7. 7.
    Casas-Roma, J., Herrera-Joancomartí, J., Torra, V.: A Summary of k-Degree Anonymous Methods for Privacy-Preserving on Networks. Chapter 13, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  8. 8.
    Conti, M., Di Pietro, R., Marconi, L.: Privacy for LBSs: on Using a Footprint Model to Face the Enemy. Chapter 10, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  9. 9.
    Daza, V., Signorini, M.: Smart User Authentication for an Improved Data Privacy. Chapter 19, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  10. 10.
    Domingo-Ferrer, J.: A Three-Dimensional Conceptual Framework for Database Privacy, Secure Data Management. Lecture Notes in Computer Science, pp. 193–202. Springer, Berlin Heidelberg (2007)Google Scholar
  11. 11.
    Domingo-Ferrer, J., Torra, V.: Disclosure control methods and information loss for microdata. In: Doyle, P., Lane, J.I., Theeuwes, J.J.M., Zayatz, L. (eds.) Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies, pp. 91–110. Elsevier Science, Amsterdam (2001)Google Scholar
  12. 12.
    Duncan, G.T., Elliot, M., Salazar, J.J.: Statistical Confidentiality. Springer, New York (2011)Google Scholar
  13. 13.
    EFF: NSA Spying on Americans. Electronic frontier foundation. https://www.eff.org/nsa-spying (2014)
  14. 14.
    Garcia-Alfaro, J., Herrera-Joancomartí, J., Melià-Segui, J.: Security and Privacy Concerns about the RFID layer of EPC Gen2 Networks. Chapter 19, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  15. 15.
    Hinarejos, M.F., Isern-Deyà, A.P., Ferrer-Gomila, J.L.: Privacy on Mobile Coupons Booklets. Chapter 20, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  16. 16.
    Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Nordholt, E.S., Spicer, K., de Wolf, P.-P.: Statistical Disclosure Control. Wiley, New York (2012)Google Scholar
  17. 17.
    Juarez, M., Torra, V.: Optimisation-Based Study of Data Privacy by Using PRAM. Chapter 21, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  18. 18.
    Manjón, J.A., Domingo-Ferrer, J.: Selected Privacy Research Topics in the ARES Project: An Overview. Chapter 2, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  19. 19.
    Marés, J., Torra, V., Shlomo, N.: Optimisation-Based Study of Data Privacy by Using PRAM. Chapter 6, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  20. 20.
    Martínez, S., Valls, A., Sanchez, D.: Semantic Anonymisation of Categorical Datasets. Chapter 7, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  21. 21.
    Martínez-Balleste, A., Solanas, A., Rashwan, H.A.: Trustworthy Video Surveillance: an Approach Based on Guaranteeing Data Privacy. Chapter 15, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  22. 22.
    Martinez-Bea, S.: A Prototype for Anonymizing Trajectories from a Time Series Perspective. Chapter 12, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  23. 23.
    Matwin, S., Nin, J., Sehatkar, M., Szapiro, T.: A Review of Attribute Disclosure Control. Chapter 4, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  24. 24.
    Mozilla: The web we want. https://webwewant.mozilla.org/ (2014)
  25. 25.
    Narayanan, A., Shmatikov, V.: Robust De-anonymization of Large Sparse Datasets. In Proceedings of the 2008 IEEE Symposium on Security and Privacy (SP ’08), pp. 111–125. IEEE Computer Society (2008)Google Scholar
  26. 26.
    Navarro-Arribas, G., Torra, V.: Information fusion in data privacy: a survey. Inf. Fusion 13(4), 235–244 (2012)CrossRefGoogle Scholar
  27. 27.
    Navarro-Arribas, G., Torra, V., Erola, A., Castellà-Roca, J.: User k-anonymity for privacy preserving data mining of query logs. Inf. Process. Manage. 48, 476–487 (2012)CrossRefGoogle Scholar
  28. 28.
    Nettleton, D.F., Abril, D.: An Information Retrieval Approach to Document Sanitization. Chapter 9, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  29. 29.
    Parra-Arnau, J., Rebollo-Monedero, D., Forné, J.: Privacy-Enhancing Technologies and Metrics in Personalized Information Systems. Chapter 23, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  30. 30.
    Payeras-Capellà, M.M., Mut-Puigserver, M., Ferrer-Gomila, J.L., Castellà-Roca, J., Vives-Guasch, A.: Electronic Ticketing: Requirements and Proposals Related to Transport. Chapter 16, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  31. 31.
    Poblete, B., Spiliopoulou, M., Baeza-Yates, R.: Privacy-preserving query log mining for business confidentiality protection. ACM Trans. Web 4(3), 1–26 (2010)CrossRefGoogle Scholar
  32. 32.
    Romero-Tris, C., Viejo, A., Castellà-Roca, J.: Multi-party Methods for Privacy-Preserving Web Search: Survey and Contributions. Chapter 20, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  33. 33.
    Sramka, M.: Evaluating Privacy Risks in Social Networks from the Users Perspective. Chapter 14, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  34. 34.
    Stokes, K., Bras-Amorós, M.: A Survey on the Use of Combinatorial Configurations for Anonymous Retrieval. Chapter 22, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  35. 35.
    Torra, V.: Towards Knowledge Intensive Data Privacy. Data Privacy Management and Autonomous Spontaneous Security. Lecture Notes in Computer Science, vol. 6514, pp. 1–7. Springer, Cham (2011)Google Scholar
  36. 36.
    Torra, V., Navarro-Arribas, G.: Data Privacy at the IIIA-CSIC. Chapter 3, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  37. 37.
    Torra, V., Navarro-Arribas, G.: Data privacy. WIREs Data Min. Knowl. Discov. 4, 178–195 (2014). doi:10.1002/widm.1129
  38. 38.
    Trujillo-Rasua, R., Domingo-Ferrer, J.: Privacy in Spatio-Temporal Databases: A Microaggregation-Based Approach. Chapter 11, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  39. 39.
    Vera del Campo, J., Pegueroles, J., Hernandez-Serrano, J., Soriano, M.: Managing Privacy in the Internet of Things: DocCloud, a Use Case. Chapter 24, Advanced Research on Data Privacy. Springer, Cham (2014)Google Scholar
  40. 40.
    Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y., Theodoridis, Y.: State-of-the-art in privacy preserving data mining. SIGMOD Rec. 33, 50–57 (2004)CrossRefGoogle Scholar
  41. 41.
    Willenborg, L., de Waal, T.: Elements of Statistical Disclosure Control. Lecture Notes in Statistics. Springer-Verlag, New-York (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Information and Communications EngineeringUniversitat Autonoma de BarcelonaCataloniaSpain
  2. 2.Institut d’Investigació en Intel·ligència ArtificialConsejo Superior de Investigaciones Científicas Campus de la UABCataloniaSpain

Personalised recommendations