International Workshop on Rules and Rule Markup Languages for the Semantic Web

RuleML 2014: Rules on the Web. From Theory to Applications pp 127-141 | Cite as

A Hybrid Diagnosis Approach Combining Black-Box and White-Box Reasoning

  • Mingmin Chen
  • Shizhuo Yu
  • Nico Franz
  • Shawn Bowers
  • Bertram Ludäscher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8620)


We study model-based diagnosis and propose a new approach of hybrid diagnosis combining black-box and white-box reasoning. We implemented and compared different diagnosis approaches including the standard hitting set algorithm and new approaches using answer set programming engines (DLV, Potassco) in the application of Euler/X toolkit, a logic-based toolkit for alignment of multiple biological taxonomies. Our benchmarks show that the new hybrid diagnosis approach runs about twice fast as the black-box diagnosis approach of the hitting set algorithm.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, H.R., Hulgaard, H.: Boolean expression diagrams. In: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science, LICS 1997, pp. 88–98. IEEE (1997)Google Scholar
  2. 2.
    Baader, F., Suntisrivaraporn, B.: Debugging snomed ct using axiom pinpointing in the description logic \(\mathcal{EL}^{+}\). In: Proceedings of the International Conference on Representing and Sharing Knowledge Using SNOMED (KR-MED 2008). Citeseer, Phoenix (2008)Google Scholar
  3. 3.
    Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Beckert, B., Gladisch, C.: White-box testing by combining deduction-based specification extraction and black-box testing. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 207–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer set programming. In: Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming. LNCS, vol. 6125, pp. 159–182. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    Chen, M., Yu, S., Franz, N., Bowers, S., Ludäscher, B.: Euler/x: A toolkit for logic-based taxonomy integration. In: 22nd Intl. Workshop on Functional and (Constraint) Logic Programming (WFLP), Kiel, Germany (2013)Google Scholar
  7. 7.
    de la Banda, M.G., Stuckey, P.J., Wazny, J.: Finding all minimal unsatisfiable subsets. In: Proceedings of the 5th ACM SIGPLAN International Conference on Principles and Practice of Declaritive Programming, pp. 32–43. ACM (2003)Google Scholar
  8. 8.
    Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems in logic and AI. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 549–564. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: A primer. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 169–188. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Franz, N., Chen, M., Yu, S., Bowers, S., Ludäscher, B.: Names are not good enough: reasoning over taxonomic change in the andropogon complex. submitted for publication (2014)Google Scholar
  12. 12.
    Franz, N., Peet, R.: Perspectives: Towards a language for mapping relationships among taxonomic concepts. Systematics and Biodiversity 7(1), 5–20 (2009)CrossRefGoogle Scholar
  13. 13.
    Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings of the Twenty-sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 31–40. ACM (2007)Google Scholar
  14. 14.
    Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in owl ontologies. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS (LNAI), vol. 5785, pp. 124–137. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of owl dl entailments. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 267–280. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Köhler, S., Ludäscher, B., Smaragdakis, Y.: Declarative datalog debugging for mere mortals. In: Barceló, P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494, pp. 111–122. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Tan, J., Narasimhan, P.: Rams and blacksheep: Inferring white-box application behavior using black-box techniques. Technical report, Technical Report CMU-PDL-08-103. Carnegie Mellon University Parallel Data Laboratory (2008)Google Scholar
  19. 19.
    Thau, D., Bowers, S., Ludäscher, B.: Merging taxonomies under rcc-5 algebraic articulations. In: 2nd International Workshop on Ontologies and Information Systems for the Semantic Web, pp. 47–54. ACM (2008)Google Scholar
  20. 20.
    Thau, D., Ludäscher, B.: Reasoning about taxonomies in first-order logic. Ecological Informatics 2(3), 195–209 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mingmin Chen
    • 1
  • Shizhuo Yu
    • 1
  • Nico Franz
    • 2
  • Shawn Bowers
    • 3
  • Bertram Ludäscher
    • 1
  1. 1.Dept. of Computer ScienceUniversity of CaliforniaDavisUSA
  2. 2.School of Life SciencesArizona State UniversityUSA
  3. 3.Dept. of Computer ScienceGonzaga UniversityUSA

Personalised recommendations