On Using Semantically-Aware Rules for Efficient Online Communication

  • Zaenal Akbar
  • José María García
  • Ioan Toma
  • Dieter Fensel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8620)


The ever growing number of communication channels not only enables a broader outreach for organizations, but also makes it more difficult for them to manage a very large number of channels and adapted content efficiently. Thus, finding the right channels to disseminate some content and adapting this content to specific channel requirements are real challenges for sharing information both efficiently and effectively. In this work, we present a rule-based system that addresses these challenges by decoupling the information to be shared from the actual channels where it is published. We propose semantic models to characterize and integrate various information sources and channels. A set of independent rules then interrelates these models, specifying the concrete publication workflow and content adaptation required. Furthermore, we evaluate our rule-based system using two different use cases, discussing the added value that the defined rules provide to this scenario and how they contribute to overcoming the identified challenges effectively.


online communication rule-based systems knowledge modelling social media 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fensel, D., Leiter, B., Thaler, S., Thalhammer, A., Toma, I.: Effective and efficient on-line communication. In: 23rd International Workshop on Database and Expert Systems Applications (DEXA), pp. 294–298 (2012)Google Scholar
  2. 2.
    Toma, I., Fensel, D., Gagiu, A.E., Stavrakantonakis, I., Fensel, A., Leiter, B., Thalhammer, A., Larizgoitia, I., Garcia, J.M.: Enabling scalable multi-channel communication through semantic technologies. In: International Conference on Web Intelligence, vol. 1, pp. 591–596 (2013)Google Scholar
  3. 3.
    Studer, R., Benjamins, V., Fensel, D.: Knowledge engineering: Principles and methods. Data & Knowledge Engineering 25(1-2), 161–197 (1998)zbMATHCrossRefGoogle Scholar
  4. 4.
    Fensel, A., Fensel, D., Leiter, B., Thalhammer, A.: Effective and efficient online communication: The channel model. In: International Conference on Data Technologies and Applications, pp. 209–215 (2012)Google Scholar
  5. 5.
    Boley, H., Kifer, M., Pătrânjan, P.-L., Polleres, A.: Rule interchange on the web. In: Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.-L., Tolksdorf, R. (eds.) Reasoning Web. LNCS, vol. 4636, pp. 269–309. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Boley, H.: Grailog 1.0: Graph-Logic Visualization of Ontologies and Rules. In: Morgenstern, L., Stefaneas, P., Lévy, F., Wyner, A., Paschke, A. (eds.) RuleML 2013. LNCS, vol. 8035, pp. 52–67. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence 19(1), 17–37 (1982)CrossRefGoogle Scholar
  8. 8.
    Toma, I., Fensel, D., Oberhauser, A., Fuchs, C., Stanciu, C., Larizgoitia, I.: Sesa: A scalable multi-channel communication and booking solution for e-commerce in the tourism domain. In: 2013 IEEE 10th International Conference on e-Business Engineering (ICEBE), pp. 288–293 (September 2013)Google Scholar
  9. 9.
    Fensel, D., Leiter, B., Brenner, C.: Planetdata on-line communication handbook. White paper, Semantic Technology Institute, University of Innsbruck (April 2012),
  10. 10.
    Akbar, Z., Lasierra, N., Tymaniuk, S.: Tourismusverband ontology. Technical report, Semantic Technology Institute, University of Innsbruck (January 2014),
  11. 11.
    Akbar, Z., Garcia, J.M.: Tourismusverband publication rules. Technical report, Semantic Technology Institute, University of Innsbruck (March 2014),
  12. 12.
    Bry, F., Eckert, M.: Twelve theses on reactive rules for the web. In: Grust, T., et al. (eds.) EDBT 2006 Workshops. LNCS, vol. 4254, pp. 842–854. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Berstel, B., Bonnard, P., Bry, F., Eckert, M., Pătrânjan, P.-L.: Reactive rules on the web. In: Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.-L., Tolksdorf, R. (eds.) Reasoning Web. LNCS, vol. 4636, pp. 183–239. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Paschke, A., Kozlenkov, A.: Rule-based event processing and reaction rules. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 53–66. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Paschke, A., Boley, H., Zhao, Z., Teymourian, K., Athan, T.: Reaction ruleml 1.0: Standardized semantic reaction rules. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 100–119. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Saake, G., Sattler, K.U., Conrad, S.: Rule-based schema matching for ontology-based mediators. Journal of Applied Logic 3(2), 253–270 (2005)CrossRefGoogle Scholar
  18. 18.
    Davulcu, H., Kifer, M., Ramakrishnan, C.R., Ramakrishnan, I.V.: Logic based modeling and analysis of workflows. In: Proceedings of the 7th Symposium on Principles of Database Systems, pp. 25–33 (1998)Google Scholar
  19. 19.
    Mukherjee, S., Davulcu, H., Kifer, M., Senkul, P., Yang, G.: Logic-based approaches to workflow modeling and verification. In: Chomicki, J., Meyden, R., Saake, G. (eds.) Logics for Emerging Applications of Databases, pp. 167–202. Springer (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zaenal Akbar
    • 1
  • José María García
    • 1
  • Ioan Toma
    • 1
  • Dieter Fensel
    • 1
  1. 1.Semantic Technology InstituteUniversity of InnsbruckAustria

Personalised recommendations